【題目】我市東坡實(shí)驗(yàn)中學(xué)準(zhǔn)備開展“陽光體育活動”,決定開設(shè)足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學(xué)生對這五項(xiàng)活動的喜愛情況,隨機(jī)調(diào)查了
名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動中的一種).
![]()
根據(jù)以上統(tǒng)計圖提供的信息,請解答下列問題:
(1)
,
.
(2)補(bǔ)全上圖中的條形統(tǒng)計圖.
(3)若全校共有
名學(xué)生,請求出該校約有多少名學(xué)生喜愛打乒乓球.
(4)在抽查的
名學(xué)生中,有小薇、小燕、小紅、小梅等
名學(xué)生喜歡羽毛球活動,學(xué)校打算從小薇、小燕、小紅、小梅這
名女生中,選取
名參加全市中學(xué)生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母
、
、
、
代表)
【答案】(1)100;5;(2)足球35人,圖見解析;(3)400人;(4)
.
【解析】
(1)籃球30人占30%,可得總?cè)藬?shù),由此可以計算出n;
(2)求出足球人數(shù)=100-30-20-10-5=35人,即可解決問題;
(3)用樣本估計總體的思想即可解決問題.
(4)畫出樹狀圖即可解決問題.
解:(1)由題意m=30÷30%=100,排球占
=5%
∴n=5,
故答案為100,5.
(2)足球=100-30-20-10-5=35人,
條形圖如圖所示,
![]()
(3)若全校共有2000名學(xué)生,該校約有2000×
=400名學(xué)生喜愛打乒乓球.
(4)畫樹狀圖得:
![]()
∵一共有12種可能出現(xiàn)的結(jié)果,它們都是等可能的,符合條件的有兩種,
∴P(B、C兩人進(jìn)行比賽)=
=
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,7),點(diǎn)B的坐標(biāo)為(0,3),點(diǎn)C的坐標(biāo)為(3,0).
![]()
(1)在圖中作出△ABC的外接圓(保留必要的作圖痕跡,不寫作法),圓心坐標(biāo)為 ______;
(2)若在x軸的正半軸上有一點(diǎn)D,且∠ADB=∠ACB,則點(diǎn)D的坐標(biāo)為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=
+(1-2a)x(a>0),下列說法錯誤的是( 。
A. 當(dāng)
時,該二次函數(shù)圖象的對稱軸為y軸
B. 當(dāng)a>
時,該二次函數(shù)圖象的對稱軸在y軸的右側(cè)
C. 該二次函數(shù)的圖象的對稱軸可為x=1
D. 當(dāng)x>2時,y的值隨x的值增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在的青少年由于沉迷電視、手機(jī)、網(wǎng)絡(luò)游戲等,視力日漸減退,我市為了解學(xué)生的視力變化情況,從全市八年級隨機(jī)抽取了1200名學(xué)生,統(tǒng)計了每個人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計圖,并對視力下降的主要因素進(jìn)行調(diào)查,制成扇形統(tǒng)計圖.
![]()
解答下列問題:
(1)圖中“其他”所在扇形的圓心角度數(shù)為 ;
(2)若2016年全市八年級學(xué)生共有24000名,請你估計視力在4.9以下的學(xué)生約有多少名?
(3)根據(jù)扇形統(tǒng)計圖信息,你認(rèn)為造成中學(xué)生視力下降最主要的因素是什么,你覺得中學(xué)生應(yīng)該如何保護(hù)視力?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊AD,AB的長分別為3,8,且B,C在x軸的負(fù)半軸上,E是DC的中點(diǎn),反比例函數(shù)y=
(x<0)的圖象經(jīng)過點(diǎn)E,與AB交于點(diǎn)F.
(1)若點(diǎn)B坐標(biāo)為(﹣6,0),求m的值;
(2)若AF﹣AE=2.且點(diǎn)E的橫坐標(biāo)為a.則點(diǎn)F的橫坐標(biāo)為 (用含a的代數(shù)式表示),點(diǎn)F的縱坐標(biāo)為 ,反比例函數(shù)的表達(dá)式為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
有下列結(jié)論:
①ac<0;
②當(dāng)x>1時,y的值隨x值的增大而減小;
③x=3是方程ax2+(b﹣1)x+c=0的一個根;
④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
小明從中任意選取一個結(jié)論,則選中正確結(jié)論的概率為( )
A. 1B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩地相距120千米,甲、乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車,圖中DE,OC分別表示甲、乙離開A地的路程s(單位:千米)與時間t(單位:小時)的函數(shù)關(guān)系的圖象,設(shè)在這個過程中,甲、乙兩人相距y(單位:千米),則y關(guān)于t的函數(shù)圖象是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).
(1)求拋物線的解析式;
(2)猜想△EDB的形狀并加以證明;
(3)點(diǎn)M在對稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請問是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,AB=AC,點(diǎn)E,F分別是BC,AD的中點(diǎn),連接AE,CF.
(1)求證:四邊形AECF是矩形;
(2)若AB=8,求菱形的面積.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com