【題目】甲組的
名工人12月份完成的總工作量比此月人均定額的
倍多
件,乙組的
名工人12月份完成的總工作量比此月人均定額的
倍少
件.
(1)如果兩組工人實(shí)際完成的此月人均工作量相等,那么此月的人均定額是多少件?
(2)如果甲組工人實(shí)際完成的此月人均工作量比乙組工人實(shí)際完成的此月人均工作量少3件,那么此月人均定額是多少件?
【答案】(1)此月的人均定額是
件,(2)此月的人均定額是
件.
【解析】
設(shè)人均定額為x件,分別求出甲、乙兩組的人均工作量,再根據(jù)兩組工人實(shí)際完成的此月人均工作量相等和甲組工人實(shí)際完成的此月人均工作量比乙組工人實(shí)際完成的此月人均工作量少3件分別列出方程進(jìn)行求解即可.
解:(1)設(shè)此月的人均定額是
件,
則![]()
解得:![]()
答:此月的人均定額是
件
(2)設(shè)此月的人均定額是
件,
則![]()
解得:![]()
答:此月的人均定額是
件
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(給出定義)
數(shù)軸上順次有三點(diǎn)A、C、B,若點(diǎn)C到點(diǎn)A的距離是點(diǎn)C到點(diǎn)B的距離的3倍,我們就稱(chēng)點(diǎn)C是(A、B)的“夢(mèng)想點(diǎn)”例如:圖①中,點(diǎn)A、B表示的數(shù)分別為-2、2,表示數(shù)1的點(diǎn)C是(A、B)的“夢(mèng)想點(diǎn)”;圖②中,點(diǎn)A、B表示對(duì)的數(shù)分別為-2、2,表示-1的點(diǎn)C是(B、A)的“夢(mèng)想點(diǎn).
![]()
(解決問(wèn)題)
(1)若數(shù)軸上M、N兩點(diǎn)所表示的數(shù)分別為
且
滿(mǎn)足
求出(M、N)的“夢(mèng)想點(diǎn)”表示的數(shù);
(2)如圖③,在數(shù)軸上點(diǎn)A、B表示的數(shù)分別為-15和65,點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng):
①若點(diǎn)P運(yùn)動(dòng)到點(diǎn)B停止,則當(dāng)P、A、B中恰好有一個(gè)點(diǎn)為其余兩個(gè)點(diǎn)的“夢(mèng)想點(diǎn)”時(shí),求這個(gè)點(diǎn)表示的數(shù);
②若點(diǎn)P運(yùn)動(dòng)到B后,繼續(xù)沿?cái)?shù)軸向右運(yùn)動(dòng)的過(guò)程中,是否還存在點(diǎn)P、A、B中恰好有一個(gè)點(diǎn)為其余兩點(diǎn)的“夢(mèng)想點(diǎn)”的情況?若存在,請(qǐng)直接寫(xiě)出此時(shí)以PA、PB為鄰邊長(zhǎng)的長(zhǎng)方形的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線(xiàn),O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過(guò)點(diǎn)D。![]()
(1)求證:BC是⊙O切線(xiàn);
(2)若BD=5,DC=3,求AC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線(xiàn),點(diǎn)P為射線(xiàn)OC上一點(diǎn),OP=4,點(diǎn)M、N分別為OA、OB邊上動(dòng)點(diǎn),則△MNP周長(zhǎng)的最小值為( )
![]()
A. 2 B. 4 C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=kx+k,與y=
在同一坐標(biāo)系中的圖象大致如圖,則( )![]()
A.K﹥0
B.K﹤0
C.-1﹤K﹤0
D.K﹤-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m, CE⊥直線(xiàn)m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)m上,并且有∠BDA=∠AEC=∠BAC=
,其中
為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線(xiàn)m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線(xiàn)上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外圴相同.
(1)從箱子里任意摸出一個(gè)球是白球的概率是多少?
(2)從箱子里任意摸出一個(gè)球,不將它放回,攪均后再摸出一球,求兩次摸出的球都是白球的概率,并畫(huà)出樹(shù)狀圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā)沿圖中某一個(gè)扇形順時(shí)針勻速運(yùn)動(dòng),設(shè)∠APB=y(單位:度),如果y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點(diǎn)P的運(yùn)動(dòng)路線(xiàn)可能為( )![]()
A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在AB邊上,點(diǎn)D到點(diǎn)A的距離與點(diǎn)D到點(diǎn)C的距離相等.
(1)利用尺規(guī)作圖作出點(diǎn)D,不寫(xiě)作法但保留作圖痕跡.
(2)若△ABC的底邊長(zhǎng)5,周長(zhǎng)為21,求△BCD的周長(zhǎng).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com