如圖,矩形ABCD中,點(diǎn)P是線段AD上一動點(diǎn),O為BD的中點(diǎn), PO的延長線交BC于Q.
(1)求證:△ P O D ≌ △Q O B ;
(2)若AD=8厘米,AB=6厘米,P從點(diǎn)A出發(fā),以1厘米/秒的速度向D運(yùn)動(不與D重合).設(shè)點(diǎn)P運(yùn)動時(shí)間為t秒,請用t表示PD的長;并求t為何值時(shí),四邊形P B Q D是菱形.
![]()
(1)證明:
四邊形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB,
∴△POD≌△QOB
(2)解法一: PD=8-t
∵四邊形ABCD是矩形,∴∠A=90°,
∵AD=8cm,AB=6cm,∴BD=10cm,∴OD=5cm.
當(dāng)四邊形PBQD是菱形時(shí), PQ⊥BD,∴∠POD=∠A,又∠ODP=∠ADB,
∴△ODP∽△ADB,
∴
,即
,
解得
,即運(yùn)動時(shí)間為
秒時(shí),四邊形PBQD是菱形.
解法二:PD=8-t
當(dāng)四邊形PBQD是菱形時(shí),PB=PD=(8-t)cm,
∵四邊形ABCD是矩形,∴∠A=90°,在RT△ABP中,AB=6cm,
∴
, ∴
,
解得
,即運(yùn)動時(shí)間為
秒時(shí),四邊形PBQD是菱形.
【解析】(1)本題需先根據(jù)四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據(jù)O為BD的中點(diǎn)得出△POD≌△QOB.
(2)本題需先根據(jù)已知條件得出∠A的度數(shù),再根據(jù)AD=8厘米,AB=6厘米,得出BD和OD的長,再根據(jù)四邊形PBQD是菱形時(shí),證出△ODP∽△ADB,即可求出t的值,判斷出四邊形PBQD是菱形
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、a≥
| ||
| B、a≥b | ||
C、a≥
| ||
| D、a≥2b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com