【題目】如圖,
中,
,連接
,將
繞點(diǎn)
旋轉(zhuǎn),當(dāng)
(即
)與
交于一點(diǎn)
,
(即
)與
交于一點(diǎn)
時(shí),給出以下結(jié)論:①
;②
;③
;④
的周長(zhǎng)的最小值是
.其中正確的是( )
![]()
A. ①②③B. ①②④C. ②③④D. ①③④
【答案】B
【解析】
根據(jù)題意可證△ABE≌△BDF,可判斷①②③,由△DEF的周長(zhǎng)=DE+DF+EF=AD+EF=4+EF,則當(dāng)EF最小時(shí)△DEF的周長(zhǎng)最小,根據(jù)垂線段最短,可得BE⊥AD時(shí),BE最小,即EF最小,即可求此時(shí)△BDE周長(zhǎng)最小值.
解:∵AB=BC=CD=AD=4,∠A=∠C=60°
∴△ABD,△BCD為等邊三角形,
∴∠A=∠BDC=60°,
∵將△BCD繞點(diǎn)B旋轉(zhuǎn)到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°,
故①正確,③錯(cuò)誤;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°,
故②正確
∵△DEF的周長(zhǎng)=DE+DF+EF=AD+EF=4+EF,
∴當(dāng)EF最小時(shí),∵△DEF的周長(zhǎng)最小.
∵∠EBF=60°,BE=BF,
∴△BEF是等邊三角形,
∴EF=BE,
∴當(dāng)BE⊥AD時(shí),BE長(zhǎng)度最小,即EF長(zhǎng)度最小,
∵AB=4,∠A=60°,BE⊥AD,
∴EB=
,
∴△DEF的周長(zhǎng)最小值為4+
,
故④正確,
綜上所述:①②④說法正確,
故選:B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(-12)-5+(-14)-(-39) (2)![]()
(3)5(a2b-ab2)-(ab2+3a2b) (4)
(用簡(jiǎn)便方法計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺(tái)的A處測(cè)得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測(cè)得兩建筑物之間的距離BC是28米,請(qǐng)你幫助小明求出建筑物CD的高度(精確到1米).
(參考數(shù)據(jù):sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點(diǎn),過點(diǎn)A作AD⊥AB交BE的延長(zhǎng)線于點(diǎn)D,CG平分∠ACB交BD于點(diǎn)G.F為AB邊上一點(diǎn),連接CF,且∠ACF=∠CBG.
![]()
(1)求證:BG=CF;
(2)求證:CF=2DE;
(3)若DE=1,求AD的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在⊙O上,AB=AC,AD與BC相交于點(diǎn)E,AE=
ED,延長(zhǎng)DB到點(diǎn)F,使FB=
BD,連接AF.
(1)證明:△BDE∽△FDA;
(2)試判斷直線AF與⊙O的位置關(guān)系,并給出證明.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
是面積為
的平行四邊形,其中
.
(1)如圖①,點(diǎn)
為
邊上任意一點(diǎn),則
的面積
和
的面積
之和與
的面積
之間的數(shù)量關(guān)系是__________;
(2)如圖②,設(shè)
交于點(diǎn)
,則
的面積
和
的面積
之和與
的面積
之間的數(shù)量關(guān)系是___________;
(3)如圖③,點(diǎn)
為
內(nèi)任意一點(diǎn)時(shí),試猜想
的面積
和
的面積
之和與
的面積
之間的數(shù)量關(guān)系,并加以證明;
(4)如圖④,已知點(diǎn)
為
內(nèi)任意一點(diǎn),
的面積為
,
的面積為
,連接
,求
的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD 中,對(duì)角線AC,BD交于點(diǎn)O,以 AD,OD為鄰邊作平行四邊形ADOE,連接BE.
(1) 求證:四邊形AOBE是菱形;
(2) 若∠EAO+∠DCO=180°,DC=2,求四邊形ADOE的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識(shí))
數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上
點(diǎn)、
點(diǎn)表示的數(shù)分別為
、
,則
、
兩點(diǎn)之間的距離
,線段
的中點(diǎn)
表示的數(shù)為
.
(問題情境)
在數(shù)軸上,點(diǎn)
表示的數(shù)為-20,點(diǎn)
表示的數(shù)為10,動(dòng)點(diǎn)
從點(diǎn)
出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)
也從點(diǎn)
出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),已知運(yùn)動(dòng)到4秒鐘時(shí),
、
兩點(diǎn)相遇,且動(dòng)點(diǎn)
、
運(yùn)動(dòng)的速度之比是
(速度單位:單位長(zhǎng)度/秒).
![]()
![]()
備用圖
(綜合運(yùn)用)
(1)點(diǎn)
的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒,點(diǎn)
的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒;
(2)當(dāng)
時(shí),求運(yùn)動(dòng)時(shí)間;
(3)若點(diǎn)
、
在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動(dòng),但運(yùn)動(dòng)的方向不限,我們發(fā)現(xiàn):隨著動(dòng)點(diǎn)
、
的運(yùn)動(dòng),線段
的中點(diǎn)
也隨著運(yùn)動(dòng).問點(diǎn)
能否與原點(diǎn)重合?若能,求出從
、
相遇起經(jīng)過的運(yùn)動(dòng)時(shí)間,并直接寫出點(diǎn)
的運(yùn)動(dòng)方向和運(yùn)動(dòng)速度;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校八年級(jí)學(xué)生舉行朗誦比賽,全年級(jí)學(xué)生都參加,學(xué)校對(duì)表現(xiàn)優(yōu)異的學(xué)生進(jìn)行表彰,設(shè)置—、二、三等獎(jiǎng)和進(jìn)步獎(jiǎng)共四個(gè)獎(jiǎng)項(xiàng),賽后將八年級(jí)(1)班的獲獎(jiǎng)情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)報(bào)據(jù)圖中的信息,解答下列問題:
![]()
(1)八年級(jí)(1)班共有 名學(xué)生;
(2)將條形圖補(bǔ)充完整;在扇形統(tǒng)計(jì)圖中,“二等獎(jiǎng)”對(duì)應(yīng)的扇形的圓心角度數(shù) ;
(3)如果該八年級(jí)共有800名學(xué)生,請(qǐng)估計(jì)榮獲一、二、三等獎(jiǎng)的學(xué)生共有多少名.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com