【題目】
內(nèi)接于
,
為
的中點(diǎn),連接
,交
邊于點(diǎn)
,且
.
(1)如圖1,求
的度數(shù);
(2)如圖2,作
于點(diǎn)
,
于點(diǎn)
,
交于點(diǎn)
,求證:
;
(3)如圖3,在(2)的條件下,連接
,若
,求線段
的長.
![]()
【答案】(1)60° (2)見解析 (3)![]()
【解析】
(1)利用等腰三角形的性質(zhì)結(jié)合圓周角定理得出答案;
(2)過
做
,垂足為
,連接
,利用AAS得出
,進(jìn)而得出答案;
(3)首先證明四邊形
是菱形,可證
(SAS),則可得
是等邊三角形, 設(shè)
,則
,
,
,
,根據(jù)四邊形
內(nèi)接于
,則有:
,可得
(SAS),設(shè)
,則
,利用勾股定理得
,
,
,
,
,再根據(jù)
,得![]()
解得
,進(jìn)而得出答案.
(1)如圖示,連接
,
![]()
,
,![]()
,
.
(2)如圖示,連接
,過
做
,垂足為
,連接
,
![]()
∵
,∴
,
∴
∵
為弧中點(diǎn),
,
![]()
,
,
又∵![]()
(AAS),
∴
.
∴
.
(3)連接
,延長
至
,使
,連接
,
![]()
由(2)可知,
,
,
∴四邊形
是菱形
∴
,
∵
為
的中點(diǎn),
∴
,
又∵![]()
(SAS),
∴![]()
,
∴
是等邊三角形,
∴
,
設(shè)
,則
,![]()
,
∴![]()
四邊形
內(nèi)接于
,
則有:
,
∴![]()
(SAS).
,
.
設(shè)
,則
,
∵
,
∴
,
,
則
,
,
,
又∵
是等邊三角形,
∴
,
則由勾股定理可求得:
.
∴
,
又
,
∴![]()
即![]()
∴![]()
解得
,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對(duì)函數(shù)
的圖象和性質(zhì)進(jìn)行了探究.已知當(dāng)自變量
的值為
或
時(shí),函數(shù)值都為
;當(dāng)自變量
的值為
或
時(shí),函數(shù)值都為
.探究過程如下,請(qǐng)補(bǔ)充完整.
![]()
(1)這個(gè)函數(shù)的表達(dá)式為 ;
(2)在給出的平面直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象并寫出這個(gè)函數(shù)的--條性質(zhì): ;
(3)進(jìn)一步探究函數(shù)圖象并解決問題:
①直線
與函數(shù)
有三個(gè)交點(diǎn),則
;
②已知函數(shù)
的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式![]()
的解集: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類情況,其相關(guān)信息如下:
![]()
根據(jù)圖表解答下列問題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖樣中,產(chǎn)生的有害垃圾C所對(duì)應(yīng)的圓心角 度;
(3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占13%,每回收1噸塑料類垃圾可獲得0.5噸二級(jí)原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為1000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級(jí)原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用10個(gè)邊長為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無縫隙的大長方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要______個(gè)小立方體,王亮所搭幾何體的表面積為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠B=90°,AB=8,CB=5,動(dòng)點(diǎn)M從C點(diǎn)開始沿CB運(yùn)動(dòng),動(dòng)點(diǎn)N從B點(diǎn)開始沿BA運(yùn)動(dòng),同時(shí)出發(fā),兩點(diǎn)均以1個(gè)單位/秒的速度勻速運(yùn)動(dòng)(當(dāng)M運(yùn)動(dòng)到B點(diǎn)即同時(shí)停止),運(yùn)動(dòng)時(shí)間為t秒.
(1)AN= ;CM= .(用含t的代數(shù)式表示)
(2)連接CN,AM交于點(diǎn)P.
①當(dāng)t為何值時(shí),△CPM和△APN的面積相等?請(qǐng)說明理由.
②當(dāng)t=3時(shí),試求∠APN的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測(cè)試,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請(qǐng)結(jié)合圖中所給信息解答下列問題:
![]()
⑴ 九年級(jí)(1)班參加體育測(cè)試的學(xué)生有_________人;
⑵ 將條形統(tǒng)計(jì)圖補(bǔ)充完整;
⑶ 在扇形統(tǒng)計(jì)圖中,等級(jí)B部分所占的百分比是___,等級(jí)C對(duì)應(yīng)的圓心角的度數(shù)為___°;
⑷ 若該校九年級(jí)學(xué)生共有850人參加體育測(cè)試,估計(jì)達(dá)到A級(jí)和B級(jí)的學(xué)生共有___人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正五邊形的邊長為2,連接對(duì)角線AD、BE、CE,線段AD分別與BE和CE相交于點(diǎn)M、N,給出下列結(jié)論:①∠AME=108°,②AN2=AMAD;③MN=3-
;④S△EBC=2
-1,其中正確的結(jié)論是_________(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
的圖象如圖,點(diǎn)
位于坐標(biāo)原點(diǎn),點(diǎn)
,
,
,…,
在
軸的正半軸上,點(diǎn)
,
,
,…,
在二次函數(shù)
位于第一象限的圖象上,
,
,
,…,
都是直角頂點(diǎn)在拋物線上的等腰直角三角形,則
的斜邊長為________.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com