如圖,在平面直角坐標(biāo)系中,點A、B分別在x軸、y軸上,線段OA、OB的長(0A<OB)是方程組
的解,點C是直線
與直線AB的交點,點D在線段OC上,OD=![]()
(1)求點C的坐標(biāo);
(2)求直線AD的解析式;
(3)P是直線AD上的點,在平面內(nèi)是否存在點Q,使以0、A、P、Q為頂點的四邊形是菱形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.
(1) (3,6) (2) y=-x+6 (3) Q1(-3
,3
) Q2(3
,-3
) Q3(3,-3) Q4(6,6)
【解析】解:(1)OA=6,OB=12 ……………………………………………………………1分
直線AB
……………………………………1分
聯(lián)立
……………………………………2分
∴ 點C的坐標(biāo)為(3,6)……………………………………………………1分
(2)
點D的坐標(biāo)為(2,4)……………………………………………………1分
設(shè)直線AD的解析式為y=kx+b.
把A(6,0),D(2,4)代人得
……………………………………1分
解得![]()
∴ 直線AD的解析式為y=-x+6 ………………………………………1分
(3)存在.
Q1(-3
,3
)……………………………………………………………1分
Q2(3
,-3
)………………………………………………………………1分
Q3(3,-3) …………………………………………………………………1分
Q4(6,6) ……………………………………………………………………1分
(1)設(shè)直線AB的解析為y=kx+b,解方程組方程組 2x=y,x-y=6 ,得到的解即為OA,OB的長度,進而知道A和B的坐標(biāo),再把其橫縱坐標(biāo)分別代入求出k和b的值即可;把求出的解析式和直線y=2x聯(lián)立解方程組,方程組的解即為點C的坐標(biāo);
(2)要求直線AD的解析式,需求出D的坐標(biāo),因為點D在直線OC上因此可設(shè)D(a,2a),又因為OD=
,由勾股定理可求出a的值,從而求得點D的坐標(biāo),把A、D的坐標(biāo)代入,利用方程組即可求解;
(3)由(2)中D的坐標(biāo)可知,DF=AF=4,所以∠OAD=45°,因為以O(shè)、A、P、Q為頂點的四邊形是菱形,所以需分情況討論:若P在x軸上方,OAPQ是菱形,則PQ∥OA,PQ=OA=6=AP,過P作PM⊥x軸,因為∠OAD=45°,利用三角函數(shù)可求出PM=AM=
,OM=6-
,即P(6-
,
),所以Q的橫坐標(biāo)為6-
-6=-
,Q1(-
,
);若P在x軸下方,OAPQ是菱形,則PQ∥OA,PQ=OA=6=AP.過P作PM⊥x軸,因為∠MAP=∠OAD=45°,利用三角函數(shù)可求出PM=AM=
,OM=6+
,即P(6+
,-
),所以Q的橫坐標(biāo)為6+
-6=
,Q2(
,-
);若Q在x軸上方,OAQP是菱形,則∠OAQ=2∠OAD=90°,所以此時OAQP是正方形.又因正方形邊長為6,所以此時Q(6,6);若Q在x軸下方,OPAQ是菱形,則∠PAQ=2∠OAD=90°,所以此時OPAQ是正方形.又因正方形對角線為6,由正方形的對稱性可得Q(3,-3).
科目:初中數(shù)學(xué) 來源: 題型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com