如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點(diǎn)O,則四邊形AB1OD的面積是()
![]()
![]()
A.![]()
B.![]()
C.![]()
D.![]()
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
B。
【考點(diǎn)】一次函數(shù)和反比例函數(shù)的性質(zhì),曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,不等式的性質(zhì),排它法的應(yīng)用。
【分析】∵
,∴雙曲線
的圖象在一、三象限。故排除C。
又∵函數(shù)
的
,
∴直線
與
軸的交點(diǎn)在
軸下
方。故排除D。
![]()
![]()
又∵
,
∴
,即OB<OA。故排除A。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【閱讀材料】己知,如圖1,在面積為S的△ABC中,BC=a,AC=b,AB=c,內(nèi)切⊙O的半徑為r.連接OA、OB、OC,△ABC被劃分為三個(gè)小三角形.
∵S=S△OBC+S△
OAC+S△OAB=![]()
BC·r+![]()
AC·r+![]()
AB·r=![]()
a·r+![]()
b·r+![]()
c·r=![]()
(a+b+c)r
∴![]()
![]()
(1)【類比推理】如圖2,若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),各邊長分
別為AB=a,
BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r的值;
(2)【理
解應(yīng)用】如圖3,在Rt△ABC中,內(nèi)切圓O的半徑為r,⊙O與△ABC分別相切于D、E和F,己知AD=3,BD=2,求r的值.
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為⊙O的直徑,弦CD與AB相交于E,DE=EC,過點(diǎn)B的切線與AD的延長線交于F,過E作EG⊥BC于G,延長GE交AD于H.
![]()
![]()
(1)求證:AH=HD;
(2)若AE:AD=![]()
,DF=9,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知⊙O的直徑CD為4,弧AC的度數(shù)為120°,弧BC的度數(shù)為30°,在直徑CD上作出點(diǎn)P,使BP+AP的值最小,若BP+AP的值最小,則BP+AP的最小值為 。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線l:
與
軸交于點(diǎn)A,
將直線l繞點(diǎn)A順
時(shí)針旋轉(zhuǎn)75º后,所得直線的解析式為【 】![]()
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在坐標(biāo)系xOy中,△ABC中,∠BAC=90°,∠ABC=60°,A(1,0),B(0,
),拋物線
的圖象過C點(diǎn).
(1)求拋物線的解析式;
(2)平移該拋物線的對稱軸所在直線l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為1
:2的兩部分?
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com