如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(-2,0),連結(jié)OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.
(1)求點B的坐標(biāo);
(2)求經(jīng)過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標(biāo);若不存在,請說明理由.
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.
(1)B(1,);
(2);
(3)點C的坐標(biāo)為(-1,)時,△BOC的周長最小,理由略.
(4)當(dāng)時,△PAB的面積的最大值為
,理由略。
解析:(1)B(1,)
(2)設(shè)拋物線的解析式為y=ax(x+a),代入點B(1,),得
,
因此
(3)如圖,拋物線的對稱軸是直線x=—1,當(dāng)點C位于對稱軸與線段AB的交點時,△BOC的周長最小.
設(shè)直線AB為y=kx+b.所以,
因此直線AB為,
當(dāng)x=-1時,,
因此點C的坐標(biāo)為(-1,).
![]()
(4)如圖,過P作y軸的平行線交AB于D.
當(dāng)x=-時,△PAB的面積的最大值為
,此時
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| PP′ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 6 |
| x |
| 3 |
| 2 |
| 6 |
| x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com