【題目】在三角形紙片
中,
,
,點(diǎn)
(不與
,
重合)是
上任意一點(diǎn),將此三角形紙片按下列方式折疊,若
的長(zhǎng)度為
,則
的周長(zhǎng)為__________.(用含
的式子表示)
![]()
【答案】6![]()
【解析】
根據(jù)折疊的性質(zhì)可得∠EDF=∠B=30°,∠EFB=∠EFD=90°,∠ACD=∠GDC=90°,然后根據(jù)三角形外角的性質(zhì)和平角的定義即可求出∠GED、∠GDE,即可證出△EGD為等邊三角形,從而得出EG=GD=ED,然后根據(jù)30°所對(duì)的直角邊是斜邊的一半即可求出ED,從而求出結(jié)論.
解:由折疊的性質(zhì)可知:∠EDF=∠B=30°,∠EFB=∠EFD=90°,∠ACD=∠GDC=90°
∴∠GED=∠EDF+∠B=60°,∠GDE=180°-∠EDF-∠GDC=60°
∴∠EGD=180°-∠GED-∠GDE=60°
∴△EGD為等邊三角形
∴EG=GD=ED
在Rt△EDF中,∠EDF=30°
∴ED=2EF=2![]()
∴EG=GD=ED=2![]()
∴
的周長(zhǎng)為EG+GD+ED=6![]()
故答案為:6
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
與一次函數(shù)
的圖象交點(diǎn)為
,
,且二次函數(shù)的最小值為
,則這個(gè)二次函數(shù)的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自動(dòng)化車(chē)間計(jì)劃生產(chǎn)480個(gè)零件,當(dāng)生產(chǎn)任務(wù)完成一半時(shí),停止生產(chǎn)進(jìn)行自動(dòng)化程序軟件升級(jí),用時(shí)20分鐘,恢復(fù)生產(chǎn)后工作效率比原來(lái)提高了
,結(jié)果完成任務(wù)時(shí)比原計(jì)劃提前了40分鐘,求軟件升級(jí)后每小時(shí)生產(chǎn)多少個(gè)零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知A(
,y1),B(2,y2)為反比例函數(shù)
圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x正半軸上運(yùn)動(dòng),當(dāng)線(xiàn)段AP與線(xiàn)段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
![]()
A. (
,0) B. (1,0) C. (
,0) D. (
,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)
與
的圖象如圖所示,下列說(shuō)法:①
;②函數(shù)
不經(jīng)過(guò)第一象限;③不等式
的解集是
;④
.其中正確的個(gè)數(shù)有( )
![]()
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線(xiàn)的公路隧道,其高度為6米,寬度OM為12米,現(xiàn)在O點(diǎn)為原點(diǎn),OM所在直線(xiàn)為x軸建立直角坐標(biāo)系(如圖所示).
(1)直接寫(xiě)出點(diǎn)M及拋物線(xiàn)頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線(xiàn)的函數(shù)解析式;
(3)施工隊(duì)計(jì)劃在隧道門(mén)口搭建一個(gè)矩形“腳手架”ABCD,使A、D點(diǎn)在拋物線(xiàn)上,B、C點(diǎn)在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長(zhǎng)度之和的最大值是多少?請(qǐng)你幫施工隊(duì)計(jì)算一下.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用“同角的余角相等”可以幫助我們得到相等的角,這個(gè)規(guī)律在全等三角形的判定中有著廣泛的運(yùn)用.
(1)如圖①,
,
,
三點(diǎn)共線(xiàn),
于點(diǎn)
,
于點(diǎn)
,
,且
.若
,求
的長(zhǎng).
(2)如圖②,在平面直角坐標(biāo)系中,
為等腰直角三角形,直角頂點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
.求直線(xiàn)
與
軸的交點(diǎn)坐標(biāo).
(3)如圖③,
,
平分
,若點(diǎn)
坐標(biāo)為
,點(diǎn)
坐標(biāo)為
.則
.(只需寫(xiě)出結(jié)果,用含
,
的式子表示)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F、 G、H分別為四邊形ABCD四邊之中點(diǎn).
![]()
(1)求證:四邊形EFGH為平行四邊形;
(2)當(dāng)AC、BD滿(mǎn)足______時(shí),四邊形EFGH為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問(wèn)題轉(zhuǎn)化成熟悉的問(wèn)題,把復(fù)雜的問(wèn)題轉(zhuǎn)化成簡(jiǎn)單的問(wèn)題,把抽象的問(wèn)題轉(zhuǎn)化為具體的問(wèn)題.
(1)請(qǐng)你根據(jù)已經(jīng)學(xué)過(guò)的知識(shí)求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)若對(duì)圖(1)中星形截去一個(gè)角,如圖(2),請(qǐng)你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)若再對(duì)圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫(xiě)出結(jié)論,不需要寫(xiě)出解題過(guò)程)
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com