【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的一個動點,延長BP到點C,使PC=PB,D是AC的中點,連接PD,PO.
(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為_______,此時BD=_______;
②連接OD,當(dāng)∠PBA的度數(shù)為________時,四邊形BPDO是菱形.
![]()
【答案】(1)見解析;(2)①4,
;②60°
【解析】
(1)根據(jù)中位線的性質(zhì)得到DP∥AB,DP=
AB,由SAS可證△CDP≌△POB;
(2)①當(dāng)四邊形AOPD的AO邊上的高等于半徑時有最大面積,依此即可求得BD;
②根據(jù)有一組對應(yīng)邊平行且相等的四邊形是平行四邊形,可得四邊形BPDO是平行四邊形,再根據(jù)鄰邊相等的平行四邊形是菱形,以及等邊三角形的判定和性質(zhì)即可求解.
(1)證明:∵PC=PB,D是AC的中點,
∴DP∥AB,
∴DP=
AB,∠CPD=∠PBO,
∵BO=
AB,
∴DP=BO,
在△CDP與△POB中,
![]()
∴△CDP≌△POB(SAS);
(2)①當(dāng)四邊形AOPD的AO邊上的高等于半徑時有最大面積,
(4÷2)×(4÷2)
=2×2
=4;
BD=
=![]()
②如圖:
![]()
∵DP∥AB,DP=BO,
∴四邊形BPDO是平行四邊形,
∵四邊形BPDO是菱形,
∴PB=BO,
∵PO=BO,
∴PB=BO=PO,
∴△PBO是等邊三角形,
∴∠PBA的度數(shù)為60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC.以AB為直徑的⊙O分別與BC、AC相交于點D、E,連接AD.過點D作DF⊥AC,垂足為點F,
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為4,∠CDF=22.5°,求圖中陰影部分的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點為B,有人在直線AB上點C(靠點B一側(cè))豎直向上擺放若干個無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).當(dāng)豎直擺放圓柱形桶至少( )個時,網(wǎng)球可以落入桶內(nèi).
![]()
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上,如圖2,當(dāng)點P為AB的中點時,判斷△ACE的形狀,并說明理由;
(3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過程中△ACE面積的最小值為4,請直接寫出a的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標(biāo)原點),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
的圖象交x軸于A(-1, 0),B(4, 0)兩點,交y軸于點C.動點M從點A出發(fā),以每秒2個單位長度的速度沿AB方向運動,過點M作MN⊥x軸交直線BC于點N,交拋物線于點D,連接AC.設(shè)運動的時間為t秒.
(1)求二次函數(shù)
的表達(dá)式;
(2)連接BD,當(dāng)
時,求△DNB的面積;
(3)在直線MN上存在一點P,當(dāng)△PBC是以∠BPC為直角的等腰直角三角形時,直接寫出此時點D的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.寫出點M′的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
![]()
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com