分析 (1)在小麗展示的情形二中,如圖3,根據(jù)三角形的外角定理、折疊的性質(zhì)推知∠B=2∠C;
(2)根據(jù)折疊的性質(zhì)、根據(jù)三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根據(jù)四邊形的外角定理知∠BAC+2∠B-2C=180°①,根據(jù)三角形ABC的內(nèi)角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;
(3)利用數(shù)學歸納法,根據(jù)小麗展示的三種情形得出結(jié)論:∠B=n∠C.
解答 解:(1)∠B=2∠C;
理由如下:
∵沿∠BAC的平分線AB1折疊,
∴∠B=∠AA1B1;
又∵將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C,
故答案為:∠B=2∠C;
(2)∠B=3∠C;在△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分,將余下部分沿∠B2A2C的平分線A2B3折疊,點B2與點C重合,
證明如下:∵根據(jù)折疊的性質(zhì)知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,
∴根據(jù)三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根據(jù)四邊形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2∠C=180°,
根據(jù)三角形ABC的內(nèi)角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
(3)故若經(jīng)過n次折疊發(fā)現(xiàn)△ABC是“可折疊三角形”,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為∠B=n∠C.
故答案為:∠B=n∠C.
點評 本題考查了翻折變換(折疊問題).解答此題時,充分利用了三角形內(nèi)角和定理、三角形外角定理以及折疊的性質(zhì).難度較大.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | AC=AE=BE | B. | AD=BD | C. | AC=BD | D. | CD=DE |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com