【題目】已知直線y=2x-5與x軸和y軸分別交于點(diǎn)A和點(diǎn)B,拋物線y=-x2+bx+c的頂點(diǎn)M在直線AB上,且拋物線與直線AB的另一個(gè)交點(diǎn)為N.
(1)如圖,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),求拋物線的解析式;
(2)在(1)的條件下,求點(diǎn)N的坐標(biāo)和線段MN的長(zhǎng);
(3)拋物線y=-x2+bx+c在直線AB上平移,是否存在點(diǎn)M,使得△OMN與△AOB相似?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
![]()
【答案】(1)拋物線的解析式
;
(2)點(diǎn)N的坐標(biāo)為
,線段MN的長(zhǎng)為
;
(3)存在點(diǎn)M(2,-1),或(4,3)
【解析】試題分析:(1)①首先求得直線與x軸,y軸的交點(diǎn)坐標(biāo),利用二次函數(shù)的對(duì)稱軸的公式即可求解;
②N在直線上同時(shí)在二次函數(shù)上,因而設(shè)N的橫坐標(biāo)是a,則在兩個(gè)函數(shù)上對(duì)應(yīng)的點(diǎn)的縱坐標(biāo)相同,據(jù)此即可求得a的值,即N的坐標(biāo),過(guò)N作NC⊥x軸,垂足為C,利用勾股定理即可求得MN的長(zhǎng);
(2)△AOB的三邊長(zhǎng)可以求得OB=2OA,AB邊上的高可以求得是
,拋物線y=-x2+bx+c在直線AB上平移,則MN的長(zhǎng)度不變,根據(jù)(1)的結(jié)果是2
,MN是AB邊上的高的二倍,當(dāng)OM⊥AB或ON⊥AB時(shí),兩個(gè)三角形相似,據(jù)此即可求得M的坐標(biāo).
試題解析:(1)①∵直線y=2x-5與x軸和y軸交于點(diǎn)A和點(diǎn)B,
∴A(
,0),B(0,-5).
當(dāng)頂點(diǎn)M與點(diǎn)A重合時(shí),
∴M(
,0).
∴拋物線的解析式是:y=(x
)2.即y=x2+5x
.
②∵N在直線y=2x-5上,設(shè)N(a,2a-5),又N在拋物線y=x2+5x
上,
∴2a5=a2+5a
.
解得a1=
,a2=
(舍去)
∴N(
,4).
過(guò)N作NC⊥x軸,垂足為C.
∵N(
,4),
∴C(
,0).
∴NC=4.MC=OMOC=![]()
=2.
∴MN=
;
(2)設(shè)M(m,2m-5),N(n,2n-5).
∵A(
,0),B(0,-5),
∴OA=
,OB=5,則OB=2OA,AB=
,
當(dāng)∠MON=90°時(shí),∵AB≠M(fèi)N,且MN和AB邊上的高相等,因此△OMN與△AOB不能全等,
∴△OMN與△AOB不相似,不滿足題意.
當(dāng)∠OMN=90°時(shí),
,即
,解得OM=
,
則m2+(2m-5)2=(
)2,解得m=2,
∴M(2,-1);
![]()
當(dāng)∠ONM=90°時(shí),
,即
,解得ON=
,
則n2+(2n-5)2=(
)2,解得n=2,
∵OM2=ON2+MN2,
即m2+(2m-5)2=5+(2
)2,
解得:m=4,
則M的坐標(biāo)是M(4,3).
故M的坐標(biāo)是:(2,-1)或(4,3).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊△ABC中,點(diǎn)D為射線BA上一點(diǎn),作DE=DC,交直線BC于點(diǎn)E,∠ABC的平分線BF交CD于點(diǎn)F,過(guò)點(diǎn)A作AH⊥CD于H,當(dāng)EDC=30
,CF=
,則DH=______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( 。
A.3a+4b=12a
B.(ab3)2=ab6
C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab
D.x12÷x6=x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,∠C=90,AC<BC,D為BC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.
(1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫(xiě)作法,保留作圖痕跡);
(2)連結(jié)AD,若∠B=37°,則∠CAD=_________度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°, BC=3cm, CD⊥AB于D, 在AC上取一點(diǎn)E,使EC=BC,過(guò)點(diǎn)E作EF⊥AC交CD的延長(zhǎng)線于點(diǎn)F,若EF=5cm,求AE.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】木工師傅在鋸木料時(shí),一般先在木料上畫(huà)出兩個(gè)點(diǎn),然后過(guò)這兩個(gè)點(diǎn)彈出一條墨線,這是因?yàn)?/span>_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( )
A.1,2,3
B.1,1,3
C.3,4,8
D.4,5,6
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com