某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計(jì)劃用它們生產(chǎn)A、B兩種產(chǎn)品共50件,已知每生產(chǎn)一件A種產(chǎn)品,需要甲種原料9kg、乙種原料3kg,獲利700元,生產(chǎn)一件B種產(chǎn)品,需要甲種原料4kg、乙種原料10kg,可獲利1200元.
(1)利用這些原料,生產(chǎn)A、B兩種產(chǎn)品,有哪幾種不同的方案?
(2)設(shè)生產(chǎn)兩種產(chǎn)品總利潤(rùn)為y(元),其中生產(chǎn)A中產(chǎn)品x(件),試寫(xiě)出y與x之間的函數(shù)解析式.
(3)利用函數(shù)性質(zhì)說(shuō)明,采用(1)中哪種生產(chǎn)方案所獲總利潤(rùn)最大?最大利潤(rùn)是多少?
(1)符合的生產(chǎn)方案有三種,分別為①生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件;②生產(chǎn)A產(chǎn)品31件,B產(chǎn)品19件;③生產(chǎn)A產(chǎn)品32件,B產(chǎn)品18件;(2)
;(3)第一種方案,45000.
【解析】
試題分析:(1)關(guān)系式為:A種產(chǎn)品需要甲種原料數(shù)量+B種產(chǎn)品需要甲種原料數(shù)量≤360;A種產(chǎn)品需要乙種原料數(shù)量+B種產(chǎn)品需要乙種原料數(shù)量≤290,把相關(guān)數(shù)值代入即可;解不等式,得到關(guān)于x的范圍,根據(jù)整數(shù)解可得相應(yīng)方案
(2)總獲利=700×A種產(chǎn)品數(shù)量+1200×B種產(chǎn)品數(shù)量;
(3)根據(jù)函數(shù)的增減性和(1)得到的取值可得最大利潤(rùn).
試題解析:(1)
;解第一個(gè)不等式得:
,解第二個(gè)不等式得:
,∴
,∵
為正整數(shù),∴
=30、31、32,∴50﹣30=20,50﹣31=19,50﹣32=18,∴符合的生產(chǎn)方案有三種,分別為①生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件;②生產(chǎn)A產(chǎn)品31件,B產(chǎn)品19件;③生產(chǎn)A產(chǎn)品32件,B產(chǎn)品18件;
(2)
,
(3)∵
,﹣500<0,而
,∴當(dāng)
越小時(shí),總利潤(rùn)
越大,即當(dāng)
時(shí),最大利潤(rùn)為:
元.∴生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件使生產(chǎn)A、B兩種產(chǎn)品的總獲利最大,最大利潤(rùn)是45000元.
考點(diǎn):1.一元一次不等式組的應(yīng)用;2.方案型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 需要甲原料 | 需要乙原料 | |
| 一種A種產(chǎn)品 | 7kg | 4kg |
| 一種B種產(chǎn)品 | 3kg | 10kg |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 需要用甲原料 | 需要用乙原料 | |
| 一件A種產(chǎn)品 | 7kg | 4kg |
| 一件B種產(chǎn)品 | 3kg | 10kg |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com