【題目】如圖,∠ABC,∠ACB的平分線(xiàn)相交于點(diǎn)F,過(guò)點(diǎn)F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論:
①△BDF,△CEF都是等腰三角形;
②DE=BD+CE;
③△ADE的周長(zhǎng)為AB+AC;
④BD=CE.其中正確的是 .
![]()
【答案】①②③
【解析】試題分析:①∵BF是∠ABC的角平分線(xiàn),
∴∠ABF=∠CBF,
又∵DE∥BC,
∴∠CBF=∠DFB,
∴DB=DF即△BDF是等腰三角形,
同理∠ECF=∠EFC,
∴EF=EC,
∴△BDF,△CEF都是等腰三角形;故正確.
②∵△BDF,△CEF都是等腰三角形,
∴DF=DB,EF=EC,
∴DE=DF+EF=BD+EC,故正確.
③∵①△BDF,△CEF都是等腰三角形
∴BD=DF,EF=EC,
△ADE的周長(zhǎng)=AD+DF+EF+AE=AD+BD+AE+EC=AB+AC;故正確,
④無(wú)法判斷BD=CE,故錯(cuò)誤,
故答案為①②③.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形(長(zhǎng)方形),點(diǎn)A、C的坐標(biāo)分別為A(10,0 ),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在線(xiàn)段BC邊上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為 ____________________________________ .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(南陽(yáng)唐河縣期中)如圖,在ABCD中,DE平分∠ADC交AB于G,交CB的延長(zhǎng)線(xiàn)于E,BF平分∠ABC交AD的延長(zhǎng)線(xiàn)于F.
(1)若AD=5,AB=8,求GB的長(zhǎng);
(2)求證:∠E=∠F.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,∠ADC的平分線(xiàn)交AB于點(diǎn)E,∠ABC的平分線(xiàn)交CD于點(diǎn)F,求證:四邊形EBFD是平行四邊形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線(xiàn)L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,則有k1k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線(xiàn)經(jīng)過(guò)A(2,3),且與y=
x+3垂直,求解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地生產(chǎn)一種綠色蔬菜,若在市場(chǎng)上直接銷(xiāo)售,每噸利潤(rùn)為1 000元;經(jīng)粗加工后銷(xiāo)售,每噸利潤(rùn)可達(dá)4 500元;經(jīng)精加工后銷(xiāo)售,每噸利潤(rùn)漲至7 500元.
當(dāng)?shù)匾患沂卟斯臼斋@這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對(duì)蔬菜進(jìn)行粗加工,每天可加工16噸;如果進(jìn)行精加工,每天可加工6噸,但兩種加工方式不能同時(shí)進(jìn)行,受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷(xiāo)售或加工完畢,為此公司制訂了三種方案:
方案一:將蔬菜全部進(jìn)行粗加工;
方案二:盡可能多的對(duì)蔬菜進(jìn)行精加工,沒(méi)有來(lái)得及進(jìn)行加工的蔬菜,在市場(chǎng)上直接銷(xiāo)售;
方案三:將部分蔬菜進(jìn)行精加工,其余蔬菜進(jìn)行粗加工,并恰好15天完成.
你認(rèn)為選擇哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線(xiàn),CD=5cm,求AB的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,過(guò)點(diǎn)A作⊙O的切線(xiàn)與直徑CD的延長(zhǎng)線(xiàn)交于點(diǎn)E,已知AE=AC. ![]()
(1)求∠B的度數(shù);
(2)若ED=1,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線(xiàn)AB上的一點(diǎn),C是直線(xiàn)AB外的一點(diǎn),OD是∠AOC的平分線(xiàn),
OE是∠COB的平分線(xiàn).
(1)已知∠1=23°,求∠2的度數(shù);
(2)無(wú)論點(diǎn)C的位置如何改變,圖中是否存在一個(gè)角,它的大小始終不變(∠AOB除外)?如果存在,求出這個(gè)角的度數(shù);如果不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com