| A. | AE=EF=FB | B. | AC=CD=DB | C. | EC=FD | D. | ∠DFB=75° |
分析 由三角形內(nèi)角和定理求出∠OCD的度數(shù),根據(jù)三角形外角的性質(zhì)得出∠OEF及∠OFE的度數(shù),由此即可得出結(jié)論;根據(jù)三角形內(nèi)角和定理即可得出∠AEO的度數(shù);連接AC,BD,可得出CD=AE=BF,由②可知EF∥CD,所以EF<CD,故可得出結(jié)論.
解答 解:∵點C,D是弧AB的三等分點,
∴AC=CD=DB,∴選項B正確;
∵OA=OB,
∴∠OAB=∠OBA=45°,
∵∠AOC=∠BOD=30°,
∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同理∠OFE=75°,
∴OE=OF,
∵OC=OD,
∴CE=DF,選項C正確;
連接AC,BD,
∵由選項C知,OC=OD,OE=OF,
∴EF∥CD,
∴EF<CD,
∵C,D是$\widehat{AB}$的三等分點,
∴AC=CD=BD,
∵∠AOC=∠COD,OA=OC=OD,
∴△ACO≌△DCO.
∴∠ACO=∠OCD.
∵∠OEF=∠OAE+∠AOE=45°+30°=75°,故選項D正確;
∠OCD=$\frac{180°-30°}{2}$=75°,
∴∠OEF=∠OCD,
∴CD∥AB,
∴∠AEC=∠OCD,
∴∠ACO=∠AEC.
故AC=AE,
同理,BF=BD.
又∵AC=CD=BD
∴CD=AE=BF≠EF,故選項A錯誤;
故選A.
點評 本題考查的是圓的綜合題,涉及到等腰三角形的性質(zhì)、全等三角形的判定定理等知識,難度適中.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 解分式必定產(chǎn)生增根 | |
| B. | 若分式方程的根是零,則必定是增根 | |
| C. | 解分式方程必須驗根 | |
| D. | x=3是方程$\frac{x}{x-3}$=2+$\frac{3}{x-3}$的根 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com