如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,
),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
![]()
(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.
解:(1)由題意,設(shè)拋物線的解析式為
(a≠0)
∵拋物線經(jīng)過(0,2)∴
,解得:
。
∴拋物線的解析式為
,即:
。
令y=0時(shí),
,解得:x=2或x=6。
∴A(2,0),B(6,0)。
(2)存在。
如圖1,由(1)知:拋物線的對稱軸l為x=4,
![]()
因?yàn)锳、B兩點(diǎn)關(guān)于l對稱,連接CB交l于點(diǎn)P,則AP=BP,所以AP+CP=BC的值最小。
∵B(6,0),C(0,2),∴OB=6,OC=2!郆C=2
。
∴AP+CP=BC=2
。
∴AP+CP的最小值為2
。
(3)如圖2,連接ME,
![]()
∵CE是⊙M的切線,∴ME⊥CE,∠CEM=90°。
由題意,得OC=ME=2,∠ODC=∠MDE,
∵在△COD與△MED中,
,
∴△COD≌△MED(AAS)!郞D=DE,DC=DM。
設(shè)OD=x,則CD=DM=OM﹣OD=4﹣x,
∵在Rt△COD中,OD2+OC2=CD2,∴
,解得x=
。
∴D(
,0)。
設(shè)直線CE的解析式為y=kx+b,
∵直線CE過C(0,2),D(
,0)兩點(diǎn),
則
,解得:
。
∴直線CE的解析式為
。
【解析】
試題分析:(1)利用頂點(diǎn)式求得二次函數(shù)的解析式后令其等于0后求得x的值即為與x軸交點(diǎn)坐標(biāo)的橫坐標(biāo)。
(2)根據(jù)軸對稱的性質(zhì),線段BC的長即為AP+CP的最小值。
(3)連接ME,根據(jù)CE是⊙M的切線得到ME⊥CE,∠CEM=90°,從而證得△COD≌△MED,設(shè)OD=x,在Rt△COD中,利用勾股定理求得x的值即可求得點(diǎn)D的坐標(biāo),然后利用待定系數(shù)法確定線段CE的解析式即可。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com