分析 (1)連結(jié)OD,如圖,由AD平分∠CAM得∠1=∠2,加上∠2=∠3,則∠1=∠3,于是可判斷OD∥MN,由于DE⊥MN,所以O(shè)D⊥DE,則可根據(jù)切線的判定定理得到DE是⊙O的切線.
(2)依題意得到△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.
解答
證明:(1)連結(jié)OD,如圖,
∵AD平分∠CAM,
∴∠1=∠2,
∵OA=OD,
∴∠2=∠3,
∴∠1=∠3,
∴OD∥MN,
∵DE⊥MN,
∴OD⊥DE,
∴DE是⊙O的切線.
(2)∵∠EDA=30°,AD=6cm,
∴AE=$\frac{1}{2}$AD=3cm.
連接CD.
∵AC是⊙O的直徑,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴$\frac{AD}{AE}$=$\frac{AC}{AD}$,即$\frac{6}{3}$=$\frac{AC}{6}$,
則AC=12(cm).
∴⊙O的半徑是6cm.
點(diǎn)評(píng) 本題考查常見(jiàn)的幾何題型,包括切線的判定,線段等量關(guān)系的證明及線段長(zhǎng)度的求法,要求學(xué)生掌握常見(jiàn)的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com