【題目】如圖,在△ABC中,BC=4,以點A為圓心、2為半徑的⊙A與BC相切于點D,交AB于E,交AC于F,點P是⊙A上的一點,且∠EPF=40°,則圖中陰影部分的面積是(結(jié)果保留π). ![]()
【答案】4﹣ ![]()
【解析】解:連接AD,則AD⊥BC; ![]()
△ABC中,BC=4,AD=2;
∴S△ABC=
BCAD=4.
∵∠EAF=2∠EPF=80°,AE=AF=2;
∴S扇形EAF=
=
;
∴S陰影=S△ABC﹣S扇形EAF=4﹣
.
【考點精析】利用圓周角定理和切線的性質(zhì)定理對題目進行判斷即可得到答案,需要熟知頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y=
的圖象在第二象限交于點C,CE⊥x軸,垂足為點E,tan∠ABO=
,OB=4,OE=2. ![]()
(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果S△BAF=4S△DFO , 求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,延長BC至E使BE=BA,過點B作BD⊥AE于點D,BD與AC交于點F,連接EF.
(1)求證:BF=2AD;
(2)若CE=
,求AC的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△APB與△CDP均為等邊三角形,且PA⊥PD,PA=PD.有下列三個結(jié)論:①∠PBC=15°;②AD∥BC;③直線PC與AB垂直.其中正確的有( )
![]()
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求完成下列題目:
(1)圖中有 塊小正方體;
(2)請在下面方格紙中分別畫出它的主視圖,左視圖和俯視圖.
![]()
(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要 個小立方塊,最多要 個小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李先生購買了一套經(jīng)濟適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:米),解答下列問題:
(1)用含x的式子表示客廳的面積;
(2)用含x的式子表示地面總面積;
(3)已知客廳面積比廚房面積多12平方米,若鋪1平方米地磚的平均費用為100元,那么鋪地磚的總費用為多少元?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC=4,在△ABC的外部,以AB為直角邊作等腰直角△ABD,連接CD,則△BCD的周長為_____________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將一個由五個邊長為1的小正方形組成的圖形剪開可以拼成一個正方形.
(1)拼成的正方形的面積與邊長分別是多少?
(2)你能在圖②中連結(jié)四個格點(每一個小正方形的頂點叫做格點),畫出一個面積為10的正方形嗎?如果不能,請說明理由;如果能,請在圖②中畫出這個正方形.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com