分析 仔細(xì)分析題目,需要求得四邊形的面積才能求得結(jié)果.連接BD,在直角三角形ABD中可求得BD的長,由BD、CD、BC的長度關(guān)系可得三角形DBC為一直角三角形,DC為斜邊;由此看,四邊形ABCD由Rt△ABD和Rt△DBC構(gòu)成,則容易求解.
解答
解:連接BD,如圖所示:
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四邊形ABCD=S△BAD+S△DBC=$\frac{1}{2}$AB•AD+$\frac{1}{2}$BD•BC=36m2;
答:這塊空地的面積為36m2.
點評 本題考查了勾股定理以及逆定理;通過勾股定理由邊與邊的關(guān)系也可證明直角三角形,這樣解題較為簡單.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②③⑤ | B. | ①②③④ | C. | ①③④⑤ | D. | ②③④⑤ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 清華大學(xué) | B. | 北京大學(xué) | C. | 北京人民大學(xué) | D. | 浙江大學(xué) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 10 | C. | 15 | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com