【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線
與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,經(jīng)過B,C兩點(diǎn)的直線為
.
![]()
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P為拋物線上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交直線BC于點(diǎn)M,連接PC,若
為直角三角形,求點(diǎn)P的坐標(biāo);
(3)當(dāng)P滿足(2)的條件,且點(diǎn)P在直線BC上方的拋物線上時(shí),如圖2,將拋物線沿射線BC方向平移,平移后B,P兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為
,
,取AB的中點(diǎn)E,連接
,
,試探究
是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
【答案】(1)
;(2)點(diǎn)P的坐標(biāo)為:
或
;(3)
.
【解析】
(1)先根據(jù)一次函數(shù)的解析式,分別求出點(diǎn)B和點(diǎn)C的坐標(biāo),然后在將B、C的坐標(biāo)代入二次函數(shù)解析式中,即可求出拋物線的函數(shù)表達(dá)式;
(2)根據(jù)直角的情況分類討論:①若
,此時(shí)
,代入到二次函數(shù)解析式中,即可求出點(diǎn)P的坐標(biāo);②若
,先求出直線PC的解析式,從而求出點(diǎn)P的坐標(biāo);③當(dāng)
,由圖易知不存在;
(3)連接
,
,作點(diǎn)C關(guān)于直線
的對(duì)稱點(diǎn)
,連接
、
,先用SAS證出△
≌△
,此時(shí)易證
≥
,根據(jù)兩點(diǎn)之間,線段最短,故當(dāng)
、
和E共線時(shí),
的值最小,且最小值為
,然后利用直線解析式求出
的坐標(biāo),即可求出
的長.
解:(1)B、C過直線![]()
將y=0代入,解得x=3;將x=0代入,解得y=
;
∴
,![]()
∵拋物線過點(diǎn)B、C
∴![]()
∴![]()
(2)①若
,此時(shí)
,代入到二次函數(shù)解析式中,
![]()
∴
,
∴
,![]()
∴![]()
②若
(如圖2)
![]()
∵![]()
∴![]()
∴![]()
∴直線PC的解析式為:![]()
∴![]()
∴![]()
③當(dāng)
,由圖易知不存在.
綜上所述:點(diǎn)P的坐標(biāo)為
或
.
(3)由(2)知
,
,
,PC= EB=2,
EB
連接
,
,作點(diǎn)C關(guān)于直線
的對(duì)稱點(diǎn)
,連接
、
,故![]()
![]()
由平移可知:
=
,![]()
![]()
∴∠
=∠![]()
∴△
≌△![]()
∴
=![]()
≥![]()
根據(jù)兩點(diǎn)之間,線段最短,故當(dāng)
、
和E共線時(shí),
的值最小,且最小值為![]()
∵![]()
![]()
∴![]()
設(shè)直線
的解析式為y=kx+b,將點(diǎn)P坐標(biāo)代入,可得
直線
的解析式為![]()
由(2)的結(jié)論可知:直線
的解析式為
,設(shè)
的坐標(biāo)為![]()
∴
的中點(diǎn)坐標(biāo)為
,代入
中可得:a=1
∴
的坐標(biāo)為![]()
∴
,
故![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BE平分∠ABC,CF平分∠BCD,E、F在AD上,BE與CF相交于點(diǎn)G,若AB=7,BC=10,則△EFG與△BCG的面積之比為( )
![]()
A.4:25B.49:100C.7:10D.2:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于給定的
,我們給出如下定義:若點(diǎn)M是邊
上的一個(gè)定點(diǎn),且以M為圓心的半圓上的所有點(diǎn)都在
的內(nèi)部或邊上,則稱這樣的半圓為
邊上的點(diǎn)M關(guān)于
的內(nèi)半圓,并將半徑最大的內(nèi)半圓稱為點(diǎn)M關(guān)于
的最大內(nèi)半圓.若點(diǎn)M是邊
上的一個(gè)動(dòng)點(diǎn)(M不與B,C重合),則在所有的點(diǎn)M關(guān)于
的最大內(nèi)半圓中,將半徑最大的內(nèi)半圓稱為
關(guān)于
的內(nèi)半圓.
![]()
(1)在
中,
,
,
①如圖1,點(diǎn)D在邊
上,且
,直接寫出點(diǎn)D關(guān)于
的最大內(nèi)半圓的半徑長;
②如圖2,畫出
關(guān)于
的內(nèi)半圓,并直接寫出它的半徑長;
(2)在平面直角坐標(biāo)系
中,點(diǎn)E的坐標(biāo)為
,點(diǎn)P在直線
上運(yùn)動(dòng)(P不與O重合),將
關(guān)于
的內(nèi)半圓半徑記為R,當(dāng)
時(shí),求點(diǎn)P的橫坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=65°,BC=6,以BC為直徑的半圓O與AB、AC分別交于點(diǎn)D、E,則圖中由O、D、E三點(diǎn)所圍成的扇形面積等于_____.(結(jié)果保留π)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺(tái)進(jìn)貨價(jià)為2500元.市場調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺(tái).商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,設(shè)每臺(tái)冰箱的定價(jià)為x元,則x滿足的關(guān)系式為( )
A. (x2500)(8+4×
)=5000 B. (2900x2500)(8+4×
)=5000
C. (x2500)(8+4×
)=5000 D. (2900x)(8+4×
)=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是
的外接圓,AB為
的直徑,在
外側(cè)作
,過點(diǎn)C作
于點(diǎn)D,交AB延長線于點(diǎn)P.
![]()
(1)求證:PC是
的切線;
(2)若
,
,求
的半徑;(用含m的代數(shù)式表示)
(3)如圖2,在(2)的條件下,作弦CF平分
,交AB于點(diǎn)E,連接BF,且
,求線段PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連接AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.
(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM,求∠CAM的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃經(jīng)銷A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如下表所示.
A型 | B型 | |
進(jìn)價(jià)(元/盞) | 40 | 65 |
售價(jià)(元/盞) | 60 | 100 |
(1)若該商場購進(jìn)這批臺(tái)燈共用去2500元,問這兩種臺(tái)燈各購進(jìn)多少盞?
(2)在每種臺(tái)燈銷售利潤不變的情況下,若該商場銷售這批臺(tái)燈的總利潤不少于1400元,問至少需購進(jìn)B種臺(tái)燈多少盞?
(3)若該商場預(yù)計(jì)用不少于2500元且不多于2600元的資金購進(jìn)這批臺(tái)燈,為了打開B種臺(tái)燈的銷路,商場決定每售出一盞B種臺(tái)燈,返還顧客現(xiàn)金a元(10<a<20),問該商場該如何進(jìn)貨,才能獲得最大的利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步提高全民“節(jié)約用水”意識(shí),某學(xué)校組織學(xué)生進(jìn)行家庭月用水量情況調(diào)查活動(dòng),李明隨機(jī)抽查了所住小區(qū)x戶家庭的月用水量,繪制了下面不完整的統(tǒng)計(jì)圖:
![]()
(1)求x并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這x戶家庭的月平均用水量;并估計(jì)李明所住小區(qū)620戶家庭中月用水量低于月平均用水量的家庭戶數(shù);
(3)從月用水量為5m3和9m3的家庭中任選兩戶進(jìn)行用水情況問卷調(diào)查,求選出的兩戶中月用水量為5m3和9m3恰好各有一戶家庭的概率;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com