分析 先求出y=x2+2x+1和y=2x+2的交點(diǎn)C′的坐標(biāo)為(1,4),再求出“關(guān)聯(lián)”拋物線y=x2+2x+1的頂點(diǎn)A坐標(biāo)(-1,0),接著利用點(diǎn)C和點(diǎn)C′關(guān)于x軸對稱得到C(1,-4),則可設(shè)頂點(diǎn)式y(tǒng)=a(x-1)2-4,然后把A點(diǎn)坐標(biāo)代入求出a的值即可得到原拋物線解析式.
解答 解:∵y=x2+2x+1=(x+1)2,
∴A點(diǎn)坐標(biāo)為(-1,0),
解方程組$\left\{\begin{array}{l}{y={x}^{2}+2x+1}\\{y=2x+2}\end{array}\right.$,
得$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,
∴點(diǎn)C′的坐標(biāo)為(1,4),
∵點(diǎn)C和點(diǎn)C′關(guān)于x軸對稱,
∴C(1,-4),
設(shè)原拋物線解析式為y=a(x-1)2-4,
把A(-1,0)代入得4a-4=0,解得a=1,
∴原拋物線解析式為y=(x-1)2-4=x2-2x-3.
故答案為:y=x2-2x-3.
點(diǎn)評 本題考查了二次函數(shù)與x軸的交點(diǎn):求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo),令y=0,即ax2+bx+c=0,解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo).△=b2-4ac決定拋物線與x軸的交點(diǎn)個(gè)數(shù),△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{2}{3}$)2 | B. | ($\frac{3}{4}$)-2 | C. | ($\frac{6}{5}$)2 | D. | ($\frac{6}{7}$)0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2+$\sqrt{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3\sqrt{13}}{2}$ | B. | $\frac{\sqrt{119}}{2}$ | C. | $\frac{\sqrt{110}}{2}$ | D. | 6 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com