正方形ABCD中,E點(diǎn)為BC中點(diǎn),連接AE,過B點(diǎn)作BF⊥AE,交CD于F點(diǎn),交AE于G點(diǎn),連接GD,過A點(diǎn)作AH⊥GD交GD于H點(diǎn).
![]()
(1) 求證:△ABE≌△BCF;
(2) 若正方形邊長為4,AH =
,求△AGD的面積.
(1)見解析(2)
解析:證明:(1) 正方形ABCD中,∠ABE=90°,
∴∠1+∠2 = 90°,
又AE⊥BF,
∴∠3+∠2 = 90°,
則∠1=∠3
又∵四邊形ABCD為正方形,
∴∠ABE=∠BCF=90°,AB=BC
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA)··················· ·5分
(2) 延長BF交AD延長線于M點(diǎn),∴∠MDF=90°
由 (1) 知 △ABE≌△BCF,∴CF = BE
∵E點(diǎn)是BC中點(diǎn),∴BE =BC,即CF =
CD = FD,
在△BCF和△MDF中,
∴△BCF≌△MDF(ASA)
∴BC=DM,即DM=AD,D是AM中點(diǎn)························· 9分
又AG⊥GM,即△AGM為直角三角形,
∴GD =AM = AD
又正方形邊長為4,∴GD = 4
S△AGD=GD·AH=
×4×
=
12分
(1)易得∠1=∠3,這兩個(gè)三角形中都有一個(gè)角是直角,加上正方形的邊長相等,利用角邊角可得這兩個(gè)三角形全等;
(2)求得DG的長就可以求得△AGD的面積.易得F為CD的中點(diǎn),延長BF交AD的延長線于點(diǎn)M,可構(gòu)造出△BCF≌△MDF,那么可得DM=BC=AD,就可以求得GD的長,也就求得了△AGD的面積
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com