【題目】根據(jù)題意, 補(bǔ)全解題過(guò)程:
如圖,∠AOB=90°,OE平分∠AOC,OF平分∠BOC. 求∠EOF的度數(shù).
![]()
解:因?yàn)?/span>OE平分∠AOC,OF平分∠BOC
所以∠EOC =
∠AOC,∠FOC =
________.
所以∠EOF =∠EOC-________
=
(∠AOC-_______)
=
________
=_________°.
【答案】∠BOC ∠FOC ∠BOC ∠AOB 45°
【解析】
根據(jù)角平分線(xiàn)的定義可得∠EOC =
∠AOC,∠FOC =
∠BOC,然后根據(jù)∠EOF =∠EOC-∠FOC進(jìn)行計(jì)算解答即可.
解:因?yàn)?/span>OE平分∠AOC,OF平分∠BOC
所以∠EOC =
∠AOC,∠FOC =
_∠BOC _______.
所以∠EOF =∠EOC-_∠FOC _______
=
(∠AOC-_∠BOC ______)
=
∠AOB
=_____45____°.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一天,某交警巡邏車(chē)在東西方向的青年路上巡邏,他從崗?fù)?/span>
出發(fā),晚上停留在
處.規(guī)定向東方向?yàn)檎,向西方向(yàn)樨?fù),當(dāng)天行駛情況記錄如下(單位:千米):
+5,-8,+10,-12,+6,-18,+5,-2.
(1)
處在崗?fù)?/span>
的什么方向?距離崗?fù)?/span>
多遠(yuǎn)?
(2)若巡邏車(chē)每行駛1千米耗油0.1升,這一天共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖為放置在水平桌面上的臺(tái)燈的平面示意圖,可伸縮式燈臂AO長(zhǎng)為40 cm,與水平面所形成的夾角∠OAM恒為75°(不受燈臂伸縮的影響).由光源0射出的光線(xiàn)沿?zé)粽中纬晒饩(xiàn)OC,OB,與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°.
(1)求該臺(tái)燈照亮桌面的寬度BC.(不考慮其他因素,結(jié)果精確到1 cm,參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,
≈1.73)
(2)若燈臂最多可伸長(zhǎng)至60 cm,不調(diào)整燈罩的角度,能否讓臺(tái)燈照亮桌面85 cm的寬度?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理是幾何學(xué)中的明珠,充滿(mǎn)著魅力,千百年來(lái),人們對(duì)它趨之若鶩,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛(ài)好者,向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法:把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為a、b、c,顯然∠DAB=∠B=90°,AC⊥DE.
(1)請(qǐng)用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再通過(guò)探究這三個(gè)圖形面積之間的關(guān)系,證明:勾股定理a2+b2=c2;
(2)如圖2,鐵路上A、B兩點(diǎn)(看作直線(xiàn)上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=24千米,BC=16千米,在AB上有一個(gè)供應(yīng)站P,且PC=PD,求出AP的距離;
(3)借助(2)的思考過(guò)程與幾何模型,直接寫(xiě)出代數(shù)式
的最小值為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=3,EC=1,則DE的長(zhǎng)為( )![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分別為邊AB、AC的中點(diǎn),將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°到△A1BC1的位置,則整個(gè)旋轉(zhuǎn)過(guò)程中線(xiàn)段OH所掃過(guò)部分的面積(即陰影部分面積)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車(chē)司機(jī)小張某天下午的運(yùn)營(yíng)是在一條東西走向的大道上。如果規(guī)定向東為正,他這天下午的行程記錄如下:(單位:千米)
+15,-3,+14,-11,+10,-18,+14
(1)將最后一名乘客送到目的地時(shí),小張離下午出車(chē)點(diǎn)的距離是多少?
(2)離開(kāi)下午出發(fā)點(diǎn)最遠(yuǎn)時(shí)是多少千米?
(3)若汽車(chē)的耗油量為0.06升/千米,油價(jià)為4.5元/升,這天下午共需支付多少油錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形
,延長(zhǎng)
到
,使
,連接
與
交于
點(diǎn).
(1)求證:
;
(2)當(dāng)
時(shí),連續(xù)
,
,求證:四邊形
為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=
x,點(diǎn)A1的坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x軸的垂線(xiàn)交直線(xiàn)于點(diǎn)B1,以原點(diǎn)O為圓心,OB1的長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2作x軸的垂線(xiàn)交直線(xiàn)于點(diǎn)B2,以原點(diǎn)O為圓心,OB2的長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,則點(diǎn)A6的坐標(biāo)為_(kāi)___________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com