分析 根據(jù)等腰三角形的性質(zhì)和等邊三角形的性質(zhì)分別得出∠AEC,∠BED,∠AED的度數(shù),由∠BEC=∠AEC+∠BED-∠AED即可求解.
解答 解:∵AC=AD=DE=EA=BD,∠BDC=32°,∠ADB=38°,
∴∠ADC=38°+32°=70°,∠CAD=180°-2×70°=40°,
∠DAE=∠ADE=∠AED=∠60°,
在△ACE中,∠CAE=60°+40°=100°,
∠AEC=(180°-100°)÷2=40°.
又∵在△BDE中,∠BDE=60°+38°=98°,
∴∠BED=(180-98)÷2=41°
∴∠BEC=∠AEC+∠BED-∠AED=40°+41°-60°=21°.
故答案為:21°.
點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)、等邊三角形的性質(zhì);熟練掌握等腰三角形和等邊三角形的性質(zhì),解題的關(guān)鍵是求出∠AEC,∠BED,∠AED的度數(shù).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2$\sqrt{2}$+4$\sqrt{3}$=6$\sqrt{5}$ | B. | 3$\sqrt{2}$-2$\sqrt{2}$=1 | C. | $\sqrt{24}$÷$\sqrt{6}$=4 | D. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 連續(xù)拋一枚硬幣n次,當(dāng)n越來越大時(shí),出現(xiàn)正面朝上的頻率會(huì)越來越穩(wěn)定于0.5 | |
| B. | 連續(xù)拋一枚硬幣50次,出現(xiàn)正面朝上的次數(shù)是25次 | |
| C. | 連續(xù)三次擲一顆骰子都出現(xiàn)了奇數(shù),則第四次出現(xiàn)的數(shù)一定是偶數(shù) | |
| D. | 某地發(fā)行一種福利彩票,中獎(jiǎng)概率為1%,買這種彩票100張一定會(huì)中獎(jiǎng) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{a}$ | B. | $\sqrt{-a}$ | C. | -$\sqrt{a}$ | D. | -$\sqrt{-a}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com