分析 (1)過(guò)點(diǎn)C作CM∥AE,根據(jù)平行線的性質(zhì)即可得出∠EAC=∠ACM、∠FBC=∠BCM,再通過(guò)角的計(jì)算即可得出結(jié)論;
(2)a=$\frac{1}{2}$(b+c).過(guò)點(diǎn)C作CG∥AM,根據(jù)平行線的性質(zhì)可得出∠MAC=∠ACG、∠NBC=∠BCG,再根據(jù)角平分線的性質(zhì)結(jié)合角的計(jì)算即可得出結(jié)論;
(3)連接PC并延長(zhǎng)到點(diǎn)M,根據(jù)三角形外角的性質(zhì)可得出∠ACM=∠PAC+∠APC、∠BCM=∠PBC+∠BPC,再根據(jù)角平分線的性質(zhì)結(jié)合角的計(jì)算即可得出結(jié)論;
(4)結(jié)合(3)的結(jié)論找出∠P1、∠P2、∠P3,根據(jù)角的變化找出變化規(guī)律“∠Pn=a-$\frac{{2}^{n}-1}{{2}^{n}}$(b+c)”,依此規(guī)律即可得出結(jié)論.
解答 解:(1)過(guò)點(diǎn)C作CM∥AE,如圖1所示.![]()
∵CM∥AE,
∴∠EAC=∠ACM.
∵CM∥AE,AE∥BF,
∴CM∥BF,
∴∠FBC=∠BCM.
∵∠ACB=∠ACM+∠BCM=a,∠EAC=b,∠FBC=c,
∴a=b+c.
故答案為:a=b+c.
(2)
a=$\frac{1}{2}$(b+c).理由如下:
過(guò)點(diǎn)C作CG∥AM,如圖2所示.
∵CG∥AM,AM∥BN,
∴AM∥BN∥CG,
∴∠MAC=∠ACG,∠NBC=∠BCG,
∵AM是∠EAC的平分線,BN是∠FBC的平分線,
∴∠ACB=∠ACG+∠BCG=∠MAC+∠NBC=$\frac{1}{2}$∠EAC+$\frac{1}{2}$∠FBC=$\frac{1}{2}$(∠EAC+∠FBC)=$\frac{1}{2}$(b+c).
(3)連接PC并延長(zhǎng)到點(diǎn)M,如圖3所示.![]()
∵∠EAC的平分線所在直線與∠FBC平分線所在直線交于P,
∴∠PAC=$\frac{1}{2}$∠EAC,∠PBC=$\frac{1}{2}$∠FBC,
∵∠ACM=∠PAC+∠APC,∠BCM=∠PBC+∠BPC,∠ACB=∠ACM+∠BCM,∠APB=∠APC+∠BPC,
∴∠ACB=∠PAC+∠PBC+∠APB,
∵∠ACB=a,∠EAC=b,∠FBC=c,
∴a=$\frac{1}{2}$(b+c)+∠APB,
∴∠APB=a-$\frac{1}{2}$(b+c).
故答案為:∠APB=a-$\frac{1}{2}$(b+c).
(4)結(jié)合(3)結(jié)論可知:
∠P1=a-$\frac{1}{2}$(b+c),∠P2=a-$\frac{3}{4}$(b+c),∠P3=a-$\frac{7}{8}$(b+c),…,
∴∠Pn=a-$\frac{{2}^{n}-1}{{2}^{n}}$(b+c).
當(dāng)n=6時(shí),∠P6=a-$\frac{{2}^{6}-1}{{2}^{6}}$(b+c)=a-$\frac{63}{64}$(b+c).
故答案為:a-$\frac{63}{64}$(b+c).
點(diǎn)評(píng) 本題考查了平行線的性質(zhì).角平分線的性質(zhì)、角的計(jì)算、三角形外角的性質(zhì)以及規(guī)律型中數(shù)的變化規(guī)律,解題的關(guān)鍵是:(1)找出∠ACB=∠EAC+∠FBC;(2)找出∠ACB=$\frac{1}{2}$∠EAC+$\frac{1}{2}$∠FBC;(3)根據(jù)三角形外角的性質(zhì)找出∠ACB=∠PAC+∠PBC+∠APB;(4)找出規(guī)律“∠Pn=a-$\frac{{2}^{n}-1}{{2}^{n}}$(b+c)”.本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)平行線的性質(zhì)找出相等或互補(bǔ)的角是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=(x-4)2-6 | B. | y=(x-4)2-2 | C. | y=(x-2)2-2 | D. | y=(x-1)2-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com