解:(1)∵C(0,6),
∴OC=6,
∴△ABC的面積=

AB×6=33,
解得AB=11,
∵拋物線的對稱軸為直線x=-

,
∴-

-

=-8,-

+

=3,
∴點A(-8,0),B(3,0),
∵拋物線y=ax
2+bx+c經(jīng)過點A、B、C,
∴

,
解得

,
∴拋物線的函數(shù)關(guān)系式為y=-

x
2-

x+6;
(2)∵A(-8,0),
∴OA=8,
①OP和OA是對應(yīng)邊時,△AOC∽△POB,
∴

=

,
即

=

,

解得OP=4,
②OP與OC是對應(yīng)邊時,△AOC∽△BOP,
∴

=

,
即

=

,
解得OP=

,
∵點P在y軸正半軸,
∴點P的坐標(biāo)為(0,4)或(0,

);
(3)過點B作BD⊥AC于D,
由勾股定理得,AC=

=

=10,
BC=

=

=3

,
S
△ABC=

AC•BD=

×10•BD=33,
解得BD=

,
∵點Q到直線AC的距離為5,
∴

=

,
即

=

,
解得CQ=

,
過Q作QE⊥y軸,QE=CQ•sin∠OCB=

×

=

,
CE=CQ•cos∠OCB=

×

=

,
點Q在點C的下方時,點Q的縱坐標(biāo)為6-

=

,
此時,點Q的坐標(biāo)為(

,

),
點Q在點C的上方時,點Q的縱坐標(biāo)為6+

=

,
此時,點Q的坐標(biāo)為(

,

),
綜上所述,直線BC上存在點Q(

,

)或(

,

),使點Q到直線AC的距離為5.
分析:(1)根據(jù)點C的坐標(biāo)求出OC的長度,再根據(jù)△ABC的面積求出AB的長度,然后根據(jù)二次函數(shù)的對稱性求出點A、B的坐標(biāo),再利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)分OP和OA是對應(yīng)邊,OP與OC是對應(yīng)邊兩種情況,根據(jù)相似三角形對應(yīng)邊成比例列式求出OP的長,然后寫出點P的坐標(biāo)即可;
(3)過點B作BD⊥AC于D,利用勾股定理列式求出AC、BC,再利用△ABC的面積求出BD,然后根據(jù)相似三角形對應(yīng)邊成比例求出CQ的長,過Q作QE⊥y軸,解直角三角形求出QE、CE,然后分點Q在點C的下方和上方兩種情況求出坐標(biāo)即可.
點評:本題是二次函數(shù)綜合題型,主要考查了三角形的面積,待定系數(shù)法求二次函數(shù)解析式,相似三角形的性質(zhì),解直角三角形,難點在于(2)(3)都要分情況討論.