先閱讀材料,再結(jié)合要求回答問(wèn)題.
【問(wèn)題情景】
如圖①:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn),且線段BE,EF,F(xiàn)D滿足BE+FD=EF.試探究圖中∠EAF與∠BAD之間的數(shù)量關(guān)系.
【初步思考】
小王同學(xué)探究此問(wèn)題的方法是:延長(zhǎng)FD到G,使DG=BE,連結(jié)AG.
先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出∠EAF與∠BAD之間的數(shù)量關(guān)系是
.

【探索延伸】
若將問(wèn)題情景中條件“∠B=∠ADC=90°”改為“∠B+∠D=180°”(如圖②),其余條件不變,請(qǐng)判斷上述數(shù)量關(guān)系是否仍然成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
【實(shí)際應(yīng)用】
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn),1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處且相距210海里.試求此時(shí)兩艦艇的位置與指揮中心(O處)形成的夾角∠EOF的大小.