【題目】如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且
,連接AC,AF,過點(diǎn)C作CD⊥AF交AF延長(zhǎng)線于點(diǎn)D,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若CD=2
,求⊙O的半徑.
![]()
【答案】 (2)4
【解析】
試題(1)連結(jié)OC,由
=
,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;
(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由
=
=
,得∠BOC=60°,則∠BAC=30°,所以
∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關(guān)系得AC=2CD=4
,在Rt△ACB中,利用含30°的直角三角形三邊的關(guān)系得BC=
AC=4,AB=2BC=8,所以⊙O的半徑為4.
試題解析:(1)證明:連結(jié)OC,如圖,
∵
=![]()
∴∠FAC=∠BAC
∵OA=OC
∴∠OAC=∠OCA
∴∠FAC=∠OCA
∴OC∥AF
∵CD⊥AF
∴OC⊥CD
∴CD是⊙O的切線
(2)解:連結(jié)BC,如圖
∵AB為直徑
∴∠ACB=90°
∵
=
=![]()
∴∠BOC=
×180°=60°
∴∠BAC=30°
∴∠DAC=30°
在Rt△ADC中,CD=2![]()
∴AC=2CD=4![]()
在Rt△ACB中,BC=
AC=
×4
=4
∴AB=2BC=8
∴⊙O的半徑為4.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
、
、
都是常數(shù),且
叫做“奇特函數(shù)”,當(dāng)
時(shí),奇特函數(shù)
就成為反比例函數(shù)
是常數(shù),且
.
若矩形的兩邊長(zhǎng)分別是
、
,當(dāng)兩邊長(zhǎng)分別增加
、
后得到的新矩形的面積是
,求
與
的函數(shù)關(guān)系式,并判斷這個(gè)函數(shù)是否“奇特函數(shù)”;
如圖在直角坐標(biāo)系中,點(diǎn)
為原點(diǎn)矩形
的頂點(diǎn),
、
坐標(biāo)分別為
、
,點(diǎn)
是
中點(diǎn),連接
、
交于
,“奇特函數(shù)”
的圖象經(jīng)過點(diǎn)
、
,求這個(gè)函數(shù)的解析式,并判斷
、
、
三點(diǎn)是否在這個(gè)函數(shù)圖象上;
對(duì)于
中的“奇特函數(shù)”
的圖象,能否經(jīng)過適當(dāng)?shù)淖儞Q后與一個(gè)反比例函數(shù)圖象重合,若能,請(qǐng)直接寫出具體的變換過程和這個(gè)反比例函數(shù)解析式;若不能,請(qǐng)簡(jiǎn)述理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a-2=0.
(1)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根;
(2)若該方程的一個(gè)根為1,求a的值及該方程的另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)完第十二章后,張老師讓同學(xué)們獨(dú)立完成課本56頁第9題:“如圖1,
,
,
,
,垂足分別為
,
,
,
,求
的長(zhǎng).”
![]()
(1)請(qǐng)你也獨(dú)立完成這道題:
(2)待同學(xué)們完成這道題后,張老師又出示了一道題:
在課本原題其它條件不變的前提下,將
所在直線旋轉(zhuǎn)到
的外部(如圖2),請(qǐng)你猜想
,
,
三者之間的數(shù)量關(guān)系,直接寫出結(jié)論:_______.(不需證明)
(3)如圖3,將(1)中的條件改為:在
中,
,
,
,
三點(diǎn)在同一條直線上,并且有∠BEC=∠ADC=∠BCA=
,其中
為任意鈍角,那么(2)中你的猜想是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人同時(shí)從A地前往相距5千米的B地.甲騎自行車,途中修車耽誤了20分鐘,甲行駛的路程
(千米)關(guān)于時(shí)間
(分鐘)的函數(shù)圖像如圖所示;乙慢跑所行的路程
(千米)關(guān)于時(shí)間
(分鐘)的函數(shù)解析式為
.
(1)在圖中畫出乙慢跑所行的路程關(guān)于時(shí)間的函數(shù)圖像;
(2)乙慢跑的速度是每分鐘________千米;
(3)甲修車后行駛的速度是每分鐘________千米;
(4)甲、乙兩人在出發(fā)后,中途________分鐘時(shí)相遇.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E.F分別在邊AD、CD上,∠EBF=45°,則△EDF
的周長(zhǎng)等于_______。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么下列說法錯(cuò)誤的是( 。
![]()
A. △EBD是等腰三角形,EB=ED B. 折疊后∠ABE和∠C′BD一定相等
C. 折疊后得到的圖形是軸對(duì)稱圖形 D. △EBA和△EDC′一定是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,A(- 1,5),B(- 1,0),C(- 4,3).
![]()
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于
軸的對(duì)稱圖形△A1B1C1;
(3)設(shè)P是y軸上的點(diǎn),要使得點(diǎn)P到點(diǎn)A,C的距離和最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD內(nèi)接于圓O,∠BAD=60°,AC為圓O的直徑.AC交BD于P點(diǎn)且PB=2,PD=4,則AD的長(zhǎng)為( )
![]()
A. 2
B. 2
C. 2
D. 4
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com