【題目】在平面直角坐標(biāo)中,△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(﹣
,0)、B(
,0)、C(0,3). ![]()
(1)求△ABC內(nèi)切圓⊙D的半徑.
(2)過點(diǎn)E(0,﹣1)的直線與⊙D相切于點(diǎn)F(點(diǎn)F在第一象限),求直線EF的解析式.
(3)以(2)為條件,P為直線EF上一點(diǎn),以P為圓心,以2
為半徑作⊙P.若⊙P上存在一點(diǎn)到△ABC三個(gè)頂點(diǎn)的距離相等,求此時(shí)圓心P的坐標(biāo).
【答案】
(1)
解:連接BD,
![]()
∵B(
,0),C(0,3),
∴OB=
,OC=3,
∴tan∠CBO=
=
,
∴∠CBO=60°
∵點(diǎn)D是△ABC的內(nèi)心,
∴BD平分∠CBO,
∴∠DBO=30°,
∴tan∠DBO=
,
∴OD=1,
∴△ABC內(nèi)切圓⊙D的半徑為1
(2)
解:連接DF,
![]()
過點(diǎn)F作FG⊥y軸于點(diǎn)G,
∵E(0,﹣1)
∴OE=1,DE=2,
∵直線EF與⊙D相切,
∴∠DFE=90°,DF=1,
∴sin∠DEF=
,
∴∠DEF=30°,
∴∠GDF=60°,
∴在Rt△DGF中,
∠DFG=30°,
∴DG=
,
由勾股定理可求得:GF=
,
∴F(
,
),
設(shè)直線EF的解析式為:y=kx+b,
∴
,
∴直線EF的解析式為:y=
x﹣1
(3)
解:
∵⊙P上存在一點(diǎn)到△ABC三個(gè)頂點(diǎn)的距離相等,
∴該點(diǎn)必為△ABC外接圓的圓心,
由(1)可知:△ABC是等邊三角形,
∴△ABC外接圓的圓心為點(diǎn)D
∴DP=2
,
設(shè)直線EF與x軸交于點(diǎn)H,
∴令y=0代入y=
x﹣1,
∴x=
,
∴H(
,0),
∴FH=
,
當(dāng)P在x軸上方時(shí),
過點(diǎn)P1作P1M⊥x軸于M,
由勾股定理可求得:P1F=3
,
∴P1H=P1F+FH=
,
∵∠DEF=∠HP1M=30°,
∴HM=
P1H=
,P1M=5,
∴OM=2
,
∴P1(2
,5),
當(dāng)P在x軸下方時(shí),
過點(diǎn)P2作P2N⊥x軸于點(diǎn)N,
由勾股定理可求得:P2F=3
,
∴P2H=P2F﹣FH=
,
∴∠DEF=30°
∴∠OHE=60°
∴sin∠OHE=
,
∴P2N=4,
令y=﹣4代入y=
x﹣1,
∴x=﹣
,
∴P2(﹣
,﹣4),
綜上所述,若⊙P上存在一點(diǎn)到△ABC三個(gè)頂點(diǎn)的距離相等,此時(shí)圓心P的坐標(biāo)為(2
,5)或(﹣
,﹣4)
【解析】(1)由A、B、C三點(diǎn)坐標(biāo)可知∠CBO=60°,又因?yàn)辄c(diǎn)D是△ABC的內(nèi)心,所以BD平分∠CBO,然后利用銳角三角函數(shù)即可求出OD的長度;(2)根據(jù)題意可知,DF為半徑,且∠DFE=90°,過點(diǎn)F作FG⊥y軸于點(diǎn)G,求得FG和OG的長度,即可求出點(diǎn)F的坐標(biāo),然后將E和F的坐標(biāo)代入一次函數(shù)解析式中,即可求出直線EF的解析式;(3)⊙P上存在一點(diǎn)到△ABC三個(gè)頂點(diǎn)的距離相等,該點(diǎn)是△ABC的外接圓圓心,即為點(diǎn)D,所以DP=2
,又因?yàn)辄c(diǎn)P在直線EF上,所以這樣的點(diǎn)P共有2個(gè),且由勾股定理可知PF=3
.本題是圓的綜合問題,涉及圓的外接圓和內(nèi)切圓的相關(guān)性質(zhì),圓的切線性質(zhì),銳角三角函數(shù),一次函數(shù)等知識,綜合程度較高,需要學(xué)生將各知識點(diǎn)靈活運(yùn)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘輪船位于燈塔P南偏西60°方向,距離燈塔20海里的A處,它向東航行多少海里到達(dá)燈塔P南偏西45°方向上的B處(參考數(shù)據(jù):
≈1.732,結(jié)果精確到0.1)?![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為y1(元),在乙采摘園所需總費(fèi)用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.![]()
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫出y1與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點(diǎn)C為⊙O外一點(diǎn),CA,CD是⊙O的切線,A,D為切點(diǎn),連接BD,AD.若∠ACD=30°,則∠DBA的大小是( ) ![]()
A.15°
B.30°
C.60°
D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=
(k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動,終點(diǎn)為C,過P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為( 。 ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC—CD—DA運(yùn)動,到達(dá)點(diǎn)A停止運(yùn)動,另一動點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動,到達(dá)點(diǎn)A停止運(yùn)動,設(shè)點(diǎn)M運(yùn)動時(shí)間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P在AB的延長線上,弦CE交AB于點(diǎn)D.連接OE、AC,且∠P=∠E,∠POE=2∠CAB.![]()
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,PB=9,求⊙O的半徑及tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是使用測角儀測量一幅壁畫高度的示意圖,已知壁畫AB的底端距離地面的高度BC=1m,在壁畫的正前方點(diǎn)D處測得壁畫底端的俯角∠BDF=30°,且點(diǎn)D距離地面的高度DE=2m,求壁畫AB的高度.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=
x2﹣
(b+1)x+
(b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.
(1)點(diǎn)B的坐標(biāo)為 , 點(diǎn)C的坐標(biāo)為(用含b的代數(shù)式表示);
(2)請你探索在第一象限內(nèi)是否存在點(diǎn)P,使得四邊形PCOB的面積等于2b,且△PBC是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;
(3)請你進(jìn)一步探索在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO,△QOA和△QAB中的任意兩個(gè)三角形均相似(全等可作相似的特殊情況)?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com