【題目】甲是第七屆國(guó)際數(shù)學(xué)教育大會(huì)的會(huì)徽,會(huì)徽的主體圖案是由圖乙中的一連串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.
細(xì)心觀察圖形,認(rèn)真分析下列各式,然后解答問(wèn)題:
![]()
(
)2+1=2,S1=
;(
)2+1=3,S2=
;(
)2+1=4,S3=
;….
(1)請(qǐng)用含有n(n是正整數(shù))的等式表示上述變化規(guī)律,并計(jì)算出OA10的長(zhǎng);
(2)求出
的值.
【答案】(1)含有n(n是正整數(shù))的等式表示上述變化規(guī)律為:
,OA10的長(zhǎng)為
;(2)![]()
【解析】
(1)根據(jù)勾股定理分別求出OA22、OA32,OA42及OA2、OA3、OA4得到OAn2及OAn對(duì)應(yīng)的S值,再計(jì)算得到OA10;
(2)由(1)知
,分別求出S1、S2、S3、
、S10,將結(jié)果代入代數(shù)式計(jì)算即可.
(1)∵OA1=1=
,OA1=A1A2=A2A3=…=A7A8=1,
∴OA22=
=1+1=2,
∴OA2=
,
,
∵OA32=
=(
)2+1=3,
∴
,
,
∵OA42=
=(
)2+1=4,
∴OA4=2,
,
,
∴
,
,
∴OA102=
=10,
∴OA10=
,
∴含有n(n是正整數(shù))的等式表示上述變化規(guī)律為:
,OA10的長(zhǎng)為
;
(2)由(1)知:
,
∴
,
,
,
,
,
∴
=
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn),連接任意兩個(gè)格點(diǎn)的線段叫做格點(diǎn)線段。
(1)如圖1,格點(diǎn)線段AB、CD,請(qǐng)?zhí)砑右粭l格點(diǎn)線段EF,使它們構(gòu)成軸對(duì)稱(chēng)圖形;
(2)如圖2,格點(diǎn)線段AB和格點(diǎn)C,在網(wǎng)格中找一格點(diǎn)D,使格點(diǎn)A、B、C、D四點(diǎn)構(gòu)成中心對(duì)稱(chēng)圖形;
(3)在(2)的條件下,如果每一小正方形邊長(zhǎng)為1,那么四邊形ABCD的面積S為_(kāi)________.
(請(qǐng)直接填寫(xiě))
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線
(x>0)經(jīng)過(guò)矩形OABC的邊AB、BC上的點(diǎn)F、E,其中CE=
CB,AF=
AB,且四邊形OEBF的面積為2,則k的值為________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的
,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(-2,y1)、(-1,y2)、(1,y3)在反比例函數(shù)y=
的圖象上,則下列結(jié)論中的正確的是( 。
A. y1>y2>y3 B. y2>y1>y3 C. y3>y1>y2 D. y3>y2>y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E、F分別為△ABC三邊的中點(diǎn),如果△ABC的面積為S,那么以AD、BE、CF為邊的三角形的面積是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱(chēng)這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).
請(qǐng)從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王勇和李明兩位同學(xué)在學(xué)習(xí)“概率”時(shí),做投擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn),他們共做了30次實(shí)驗(yàn),實(shí)驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 2 | 5 | 6 | 4 | 10 | 3 |
(1)分別計(jì)算這30次實(shí)驗(yàn)中“3點(diǎn)朝上”的頻率和“5點(diǎn)朝上”的頻率;
(2)王勇說(shuō):“根據(jù)以上實(shí)驗(yàn)可以得出結(jié)論:由于5點(diǎn)朝上的頻率最大,所以一次實(shí)驗(yàn)中出現(xiàn)5點(diǎn)朝上的概率最大”;李明說(shuō):“如果投擲300次,那么出現(xiàn)6點(diǎn)朝上的次數(shù)正好是30次”.試分別說(shuō)明王勇和李明的說(shuō)法正確嗎?并簡(jiǎn)述理由;
(3)現(xiàn)王勇和李明各投擲一枚骰子,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出兩枚骰子朝上的點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=
(x>0)的圖象交于A(m,4),B(2,n)兩點(diǎn),與坐標(biāo)軸分別交于M、N兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出kx+b﹣
>0中x的取值范圍;
(3)求△AOB的面積.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com