欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.如圖,AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,M,N分別是BA,CD延長線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F.下列結(jié)論:
①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F為定值
其中結(jié)論正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 先根據(jù)AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分線交于點(diǎn)F,由三角形內(nèi)角和定理以及平行線的性質(zhì)即可得出結(jié)論.

解答 解:∵AB⊥BC,AE⊥DE,
∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,
∴∠1=∠DEC,
又∵∠1+∠2=90°,
∴∠DEC+∠2=90°,
∴∠C=90°,
∴∠B+∠C=180°,
∴AB∥CD,故①正確;
∴∠ADN=∠BAD,
∵∠ADC+∠ADN=180°,
∴∠BAD+∠ADC=180°,
又∵∠AEB≠∠BAD,
∴AEB+∠ADC≠180°,故②錯(cuò)誤;
∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,
∴∠2=∠4,
∴ED平分∠ADC,故③正確;
∵∠1+∠2=90°,
∴∠EAM+∠EDN=360°-90°=270°.
∵∠EAM和∠EDN的平分線交于點(diǎn)F,
∴∠EAF+∠EDF=$\frac{1}{2}$×270°=135°.
∵AE⊥DE,
∴∠3+∠4=90°,
∴∠FAD+∠FDA=135°-90°=45°,
∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°,故④正確.
故選:C.

點(diǎn)評(píng) 本題主要考查了平行線的性質(zhì)與判定、三角形內(nèi)角和定理、直角三角形的性質(zhì)及角平分線的性質(zhì),熟知三角形的內(nèi)角和等于180°是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.小亮解方程組$\left\{\begin{array}{l}{2x+y=●}\\{2x-y=12}\end{array}\right.$的解為$\left\{\begin{array}{l}{x=5}\\{y=★}\end{array}\right.$,由于不小心,滴上了兩滴墨水,剛好遮住了兩個(gè)數(shù)●和★,請(qǐng)你幫他找回●這個(gè)數(shù),●=8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.解下列方程組
(1)$\left\{\begin{array}{l}{x+4y=14}\\{\frac{x-3}{4}-\frac{y-3}{3}=\frac{1}{12}}\end{array}\right.$
(2)$\left\{\begin{array}{l}a+b=3\\ b+c=-2\\ c+a=7\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.下列各組數(shù)中,互為倒數(shù)的是( 。
A.2與-2B.-$\frac{2}{3}$與$\frac{3}{2}$C.-1與(-1)2016D.-$\frac{3}{4}$與-$\frac{4}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.從甲、乙、丙三個(gè)廠家生產(chǎn)的同一種產(chǎn)品中,各抽出8件產(chǎn)品,對(duì)其使用壽命進(jìn)行跟蹤調(diào)查,結(jié)果如下(單位:年)
甲:3,4,5,6,8,8,8,10
乙:4,6,6,6,8,9,12,13
丙:3,3,4,7,9,10,11,12
三家廣告中都稱該種產(chǎn)品的使用壽命是8年,請(qǐng)根據(jù)調(diào)查結(jié)果判斷三個(gè)廠家在廣告中分別運(yùn)用了平均數(shù),眾數(shù)和中位數(shù)的哪一種數(shù)據(jù)作代表.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在△ABC中,∠B=45°,∠ACB=30°,點(diǎn)D是BC上一點(diǎn),連接AD,過點(diǎn)A作AG⊥AD,點(diǎn)F在線段AG上,延長DA至點(diǎn)E,使AE=AF,連接EG,CG,DF,若EG=DF,點(diǎn)G在AC的垂直平分線上,則$\frac{AB}{CG}$的值為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說明理由;
(3)若AD=4,AB=6,求$\frac{AC}{AF}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在菱形ABCD中,AB的垂直平分線EF交對(duì)角線AC于點(diǎn)F,垂足為點(diǎn)E,連接DF,且∠CDF=27°,則∠DAF等于51度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點(diǎn)D,AB=6,BC=10,則AD為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案