【題目】如圖,AB為半圓直徑,O為圓心,C為半圓上一點(diǎn),E是弧AC的中點(diǎn),OE交弦AC于點(diǎn)D,若AC=8cm,DE=2cm,求OD的長. ![]()
【答案】解:∵E為弧AC的中點(diǎn),∴OE⊥AC,∴AD=
AC=4cm, ∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,
∴在Rt△OAD中,OA2=OD2+AD2即OA2=(OE﹣2)2+42 , 又知0A=OE,解得:OE=5,
∴OD=OE﹣DE=3cm.
【解析】由E是弧AC的中點(diǎn),可得:OE⊥AC.根據(jù)垂徑定理得:AD=
AC,又OD=OE﹣DE,故在Rt△OAD中,運(yùn)用勾股定理可將OA的長求出.
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和垂徑定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能得出正確答案.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,在正
的內(nèi)部,作
,
,
,
兩兩相交于
,
,
三點(diǎn) (
,
,
三點(diǎn)不重合).
(
)
,
,
是否全等?如果是,請選擇其中一對進(jìn)行證明.
(
)
是否為正三角形?請說明理由.
(
)進(jìn)一步探究發(fā)現(xiàn),
的三邊存在一定的等量關(guān)系,設(shè)
,
,
,請?zhí)剿?/span>
,
,
滿足的等量關(guān)系.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣x+a(a>0),當(dāng)自變量x取m時,其相應(yīng)的函數(shù)值y<0,那么下列結(jié)論中正確的是( )
A.m﹣1的函數(shù)值小于0
B.m﹣1的函數(shù)值大于0
C.m﹣1的函數(shù)值等于0
D.m﹣1的函數(shù)值與0的大小關(guān)系不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖像如圖所示,有以下結(jié)論:
①b2﹣4c>0;②3b+c+6=0;③當(dāng)1<x<3時,x2+(b﹣1)x+c<0;
④
,其中正確的有![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=∠F,∠C=∠D, 根據(jù)圖形填空,并在括號內(nèi)注明理由.
![]()
解:∵∠A=∠F
∴AC∥________(內(nèi)錯角相等,兩直線平行)
∴∠1 =∠D(_________________________________)
∵∠C =∠D(已知)
∴∠1=___________(等量代換)
∴BD∥___________(________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項式的乘法中,能用平方差公式計算的是( )
A. (-m +n)(m - n) B. (
a +b)(b -
a)
C. (x + 5)(x + 5) D. (3a -4b)(3b +4a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列判斷:①∠A與∠1是同位角;②∠A與∠B是同旁內(nèi)角;③∠4與∠1是內(nèi)錯角;④∠1與∠3是同位角. 其中正確的是 (填序號).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com