【題目】寧波軌道交通4號線已開工建設(shè),計(jì)劃2020年通車試運(yùn)營.為了了解鎮(zhèn)民對4號線地鐵票的定價意向,某鎮(zhèn)某校數(shù)學(xué)興趣小組開展了“你認(rèn)為寧波4號地鐵起步價定為多少合適”的問卷調(diào)查,并將調(diào)查結(jié)果整理后制成了如下統(tǒng)計(jì)圖,根據(jù)圖中所給出的信息解答下列問題: ![]()
(1)求本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù);
(2)請你把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果在該鎮(zhèn)隨機(jī)咨詢一位居民,那么該居民支持“起步價為2元或3元”的概率是
(4)假設(shè)該鎮(zhèn)有3萬人,請估計(jì)該鎮(zhèn)支持“起步價為3元”的居民大約有多少人?
【答案】
(1)解:由題意可得,
同意定價為5元的所占的百分比為:18°÷360°×100%=5%,
∴本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù)為:10÷5%=200(人),
即本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù)有200人;
(2)解:由題意可得,
2元的有:200×50%=100人,
3元的有:200﹣100﹣30﹣10=60人,
補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示;
![]()
(3)![]()
(4)解:由題意可得,
(人),
即該鎮(zhèn)支持“起步價為3元”的居民大約有9000人.
【解析】解: (3)由題意可得,該居民支持“起步價為2元或3元”的概率是:
,故答案為:
; (1)根據(jù)5元在扇形統(tǒng)計(jì)圖中的圓心角和人數(shù)可以解答本題;(2)根據(jù)(1)中的答案和統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得條形統(tǒng)計(jì)圖中的未知數(shù)據(jù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)種完整;(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以得到該居民支持“起步價為2元或3元”的概率;(4)根據(jù)前面求得的數(shù)據(jù)可以估計(jì)該鎮(zhèn)支持“起步價為3元”的居民人數(shù).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對應(yīng)值如下表:
x | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 |
ax2+bx+c | ﹣2 | ﹣ | 1 |
| 2 |
| 1 | ﹣ | ﹣2 |
請判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個根x1 , x2的取值范圍是下列選項(xiàng)中的( )
A.﹣
<x1<0,
<x2<2
B.﹣1<x1<﹣
,2<x2< ![]()
C.﹣
<x1<0,2<x2< ![]()
D.﹣1<x1<﹣
,
<x2<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)D在BC邊上,有下列三個關(guān)系式: ![]()
① BAC=90°,②
=
,③AD⊥BC.
選擇其中兩個式子作為已知,余下的一個作為結(jié)論,寫出已知,求證,并證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)m,n是實(shí)數(shù)且滿足m﹣n=mn時,就稱點(diǎn)Q(m,
)為“奇異點(diǎn)”,已知點(diǎn)A、點(diǎn)B是“奇異點(diǎn)”且都在反比例函數(shù)y=
的圖象上,點(diǎn)O是平面直角坐標(biāo)系原點(diǎn),則△OAB的面積為( )
A.1
B.![]()
C.2
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,且其中一個等腰三角形的底角是另一個等腰三角形底角的2倍,我們把這條對角線叫做這個四邊形的黃金線,這個四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個內(nèi)角的度數(shù); ![]()
(2)如圖2,點(diǎn)B是弧AC的中點(diǎn),請?jiān)凇袿上找出所有的點(diǎn)D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡); ![]()
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF. ![]()
(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣
),(
)是拋物線上兩點(diǎn),則y1<y2其中結(jié)論正確的是( ) ![]()
A.①②
B.②③
C.②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQ與BC交于點(diǎn)G,則△EBG的周長是cm. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com