【題目】已知二次函數(shù)
的部分圖象如圖所示,拋物線與
軸的一個交點坐標為
,對稱軸為直線
.
![]()
若
,求
的值;
若實數(shù)
,比較
與
的大小,并說明理由.
【答案】![]()
;
當
時,
,理由見解析.
【解析】
(1)已知拋物線對稱軸為x=1,由拋物線對稱性可知,其與x軸的另一個交點為(-1,0),把x=-1代入函數(shù)的解析式即可得到c-b的值;(2)當m≠1時,a+b>m(am+b),把x=1和x=m分別代入函數(shù)的解析式得到關(guān)于a、b、c的關(guān)系式,因為頂點的橫坐標為1,所以當x=1時函數(shù)取最大值y=a+b+c,即a+b+c>am2+bm+c,進而證明a+b>m(am+b).
由拋物線對稱性可知,其與
軸的另一個交點為
,
∴
.
當
時,解得
.
當
時,
,
理由如下:
當
時,
,
當
時,
,
∵
,
∴當
時,函數(shù)取最大值
,
∴當
時,
,
∴
,
即
.
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC與△A'B'C在平面直角坐標系中的位置如圖.
![]()
(1)分別寫出B、B'的坐標:B______;B′______;
(2)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A'B'C內(nèi)的對應點P′的坐標為______;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為菱形ABCD對角線的交點,M是射線CA上的一個動點(點M與點C、O、A都不重合),過點A、C分別向直線BM作垂線段,垂足分別為E、F,連接OE,OF.
![]()
![]()
(1)①依據(jù)題意補全圖形;
②猜想OE與OF的數(shù)量關(guān)系為_________________.
(2)小東通過觀察、實驗發(fā)現(xiàn)點M在射線CA上運動時,(1)中的猜想始終成立.
小東把這個發(fā)現(xiàn)與同學們進行交流,通過討論,形成了證明(1)中猜想的幾種想法:
想法1:由已知條件和菱形對角線互相平分,可以構(gòu)造與△OAE全等的三角形,從而得到相等的線段,再依據(jù)直角三角形斜邊中線的性質(zhì),即可證明猜想;
想法2:由已知條件和菱形對角線互相垂直,能找到兩組共斜邊的直角三角形,例如其中的一組△OAB和△EAB,再依據(jù)直角三角形斜邊中線的性質(zhì),菱形四邊相等,可以構(gòu)造一對以OE和OF為對應邊的全等三角形,即可證明猜想.
……
請你參考上面的想法,幫助小東證明(1)中的猜想(一種方法即可).
(3)當∠ADC=120°時,請直接寫出線段CF,AE,EF之間的數(shù)量關(guān)系是_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OEFG和正方形ABCD是位似圖形,點F的坐標為(1,1),點C的坐標為(4,2),則這兩個正方形位似中心的坐標是______
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:如圖①,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.
應用:如圖②,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知有公共頂點
的△
和△
都是等邊三角形,且
>
.
![]()
(1)如圖1,當點
恰好在
的延長線上時,連結(jié)
,
分別交
,
于點
,
.
①求證:
;
②連接
,求證:
∥
;
(2)圖2是由圖1中的△
繞點
順時針旋轉(zhuǎn)角
(
<
<
)得到,使得
恰好經(jīng)過
的中點
,試猜想線段
,
,
之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學問題》時,出示如圖1所示的長方形紙條
,其中
,
.然后在紙條上任意畫一條截線段
,將紙片沿
折疊,
與
交于點
,得到
.如圖2所示:
![]()
探究:
(1)若
,
______°;
(2)改變折痕
位置,
始終是______三角形,請說明理由;
應用:
(3)愛動腦筋的小明在研究
的面積時,發(fā)現(xiàn)
邊上的高始終是個不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出
的面積最小值為
,此時
的大小可以為______°;
(4)小明繼續(xù)動手操作,發(fā)現(xiàn)了
面積的最大值.請你求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。
[來
根據(jù)以上信息,解答下列問題:
(1)設(shè)租車時間為
小時,租用甲公司的車所需費用為
元,租用乙公司的車所需費用為
元,分別求出
,
關(guān)于
的函數(shù)表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)
的圖象如圖所示,下列結(jié)論:
①
;②
;③
;④
;⑤
;⑥當
時,
隨
的增大而增大.
其中正確的說法有________(寫出正確說法的序號)
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com