兩個(gè)全等的直角三角形重疊放在直線l上,如圖(1),AB=6cm,BC=8cm,∠ABC=90°,將Rt△ABC在直線l上左右平移,如圖(2)所示.
(1)求證:四邊形ACFD是平行四邊形;
(2)怎樣移動(dòng)Rt△ABC,使得四邊形ACFD為菱形;
(3)將Rt△ABC向左平移4cm,求四邊形DHCF的面積.![]()
(1)見(jiàn)解析 (2)故將Rt△ABC向左、右平移10cm均可使得四邊形ACFD為菱形
(3)18cm2
解析試題分析:(1)證明:四邊形ACFD為Rt△ABC平移形成的,
即AD∥CF,AC∥DF,故四邊形ACFD為平行四邊形.
(2)解:要使得四邊形ACFD為菱形,即使AD=AC即可,
在Rt△ABC中,AB=6cm,BC=8cm,∠ABC=90°,
根據(jù)勾股定理求得AC=
=10cm,
故將Rt△ABC向左、右平移10cm均可使得四邊形ACFD為菱形;
(3)解:將Rt△ABC向左平移4cm,即BE=4cm,
即EH為Rt△ABC的中位線,
即H為DE的中點(diǎn),
故△CEH的面積均為6cm2,
故四邊形DHCF的面積為:S△DEF﹣S△HEC=24﹣6=18(cm2).
答:四邊形DHCF的面積為18cm2.![]()
![]()
考點(diǎn):相似三角形的判定與性質(zhì);勾股定理;平行四邊形的判定;菱形的性質(zhì);平移的性質(zhì).
點(diǎn)評(píng):本題考查了三角形面積的計(jì)算,考查了相似三角形的判定,考查了中位線定理,考查了勾股定理在直角三角形中的運(yùn)用,本題中求證△CEH的面積是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com