如圖,已知在直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉,角的兩邊分別交y軸的正半軸、x軸的正半軸于點E和F.
(1)求經過A、B、C三點的拋物線的解析式;
(2)當BE經過(1)中拋物線的頂點時,求CF的長;
(3)連結EF,設△BEF與△BFC的面積之差為S,問:當CF為何值時S最小,并求出這個最小值.
![]()
見解析
解析:(1)由題意得A(0,2)、B(2,2)、C(3,0).
設經過A,B,C三點的拋物線的解析式為y=ax2+bx+2.
則
,
解得
,
∴
.
(2)由
=
.
∴頂點坐標為G(1,
).
過G作GH⊥AB,垂足為H.
則AH=BH=1,GH=
﹣2=
.
∵EA⊥AB,GH⊥AB,
∴EA∥GH.
∴GH是△BEA的中位線.
∴EA=2GH=
.
過B作BM⊥OC,垂足為M.則MB=OA=AB.
∵∠EBF=∠ABM=90°,
∴∠EBA=∠FBM=90°﹣∠ABF.
∴Rt△EBA≌Rt△FBM.
∴FM=EA=
.
∵CM=OC﹣OM=3﹣2=1,
∴CF=FM+CM=
.
3)設CF=a,則FM=a-1或1- a,
∴BF2= FM2+BM2=(a-1)2+22=a2-2a+5 .
∵△EBA≌△FBM,∴BE=BF.
則
,
又∵
,
∴
,即
,
∴當a=2(在0<a<3范圍內)時,
∴
.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
| 5 |
| 5 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com