如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB 所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標(biāo)系,若OA2+OB2= 17, 且線段OA、OB的長度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個根.
![]()
(1)求C點的坐標(biāo);
(2)以斜邊AB為直徑作圓與y軸交于另一點E,求過A、B、E 三點的拋物線的關(guān)系式,并畫出此拋物線的草圖.
(3)在拋物線上是否存在點P,使△ABP與△ABC全等?若存在,求出符合條件的P點的坐標(biāo);若不存在,說明理由.
(1) C(0,2) (2) y=
(3)
存在,(0,-2)和(3,-2)
【解析】本題是二次函數(shù)與圓以及全等三角形相結(jié)合的題目,難度較大
(1)線段OA、OB的長度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0的兩個根.根據(jù)韋達定理就可以得到關(guān)于OA,OB的兩個式子,再已知OA2+OB2=17,就可以得到一個關(guān)于m的方程,從而求出m的值.求出OA,OB.根據(jù)OC2=OA•OB就可以求出C點的坐標(biāo);
(2)由第一問很容易求出A,B的坐標(biāo).連接AB的中點,設(shè)是M,與E,在直角△OME中,根據(jù)勾股定理就可以求出OE的長,得到E點的坐標(biāo),利用待定系數(shù)法就可以求出拋物線的解析式;
(3)E點就是滿足條件的點.同時C,E關(guān)于拋物線的對稱軸的對稱點也是滿足條件的點.
解:(1)線段OA,OB的長度是關(guān)于x的一元二次方程x2-mx+2(m-3)=0 的兩個根,
∴![]()
又∵OA2+OB2=17,∴(OA+OB)2-2·OA·OB=17.③
把①,②代入③,得m2-4(m-3) =17,∴m2-4m-5=0.解之,得m=-1或m=5.
又知OA+OB=m>0,∴m=-1應(yīng)舍去.
∴當(dāng)m=5時,得方程:x2-5x+4=0,解之,得x=1或x=4.
∵BC>AC,∴OB>OA,∴OA=1,OB=4,
在Rt△ABC中,∠ACB=90°,CO⊥AB,
∴OC2=OA·OB=1×4=4.∴OC=2,∴C(0,2)
(2)∵OA=1,OB=4,C,E兩點關(guān)于x軸對稱,
∴A(-1,0),B(4,0),E(0,-2).
設(shè)經(jīng)過A,B,E三點的拋物線的關(guān)系式為
y=ax2+bx+c,則
,解之,得![]()
∴所求拋物線關(guān)系式為y=
.
(3)存在.∵點E是拋物線與圓的交點.
∴Rt△ACB≌Rt△AEB,∴E(0,-2)符合條件.
∵圓心的坐標(biāo)(
,0
)在拋物線的對稱軸上.
∴這個圓和這條拋物線均關(guān)于拋物線的對稱軸對稱.
∴點E關(guān)于拋物線對稱軸的對稱點E′也符合題意.
∴可求得E′(3,-2).
∴拋物線上存在點P符合題意,它們的坐標(biāo)是(0,-2)和(3,-2)
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 5 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com