【題目】股民王先生上周星期五買進某公司股票1000股,每股18元,本周該股票的漲跌情況如表(正數(shù)表示價格比前一天上漲,負數(shù)表示價格比前一天下跌,單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 |
|
|
|
|
|
(1)星期三結(jié)束時,該股票每股多少元?
(2)該股票本周內(nèi)每股的最高價和最低價分別是多少元?
【答案】(1)19.5元;(2)該股票本周內(nèi)每股的最高價和最低價分別是23.5元和19.5元.
【解析】
(1)根據(jù)題,先求出每天的股價即可;
(2)求出每天的股價,再進行比較即可.
解:(1)由已知可得每天的股價如下:
星期一:18+3=21(元)
星期二:21+2.5=23.5(元)
星期三:23.5-4=19.5(元)
答:星期三結(jié)束時,價格是19.5元.
(2)星期四:19.5+2=21.5(元)
星期五:21.5-1.5=20(元)
結(jié)合(1)可得該股票本周內(nèi)每股的最高價和最低價分別是23.5元和19.5元.
答:該股票本周內(nèi)每股的最高價和最低價分別是23.5元和19.5元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程x2-px-2q=0(p,q是正整數(shù)),若它的正根小于或等于4,則正根是整數(shù)的概率是 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)前,安徽黃山腳下的小村莊的集市上,人山人海,還有人在擺“摸彩”游戲,只見他手拿一個黑色的袋子,內(nèi)裝大小、形狀、質(zhì)量完全相同的白球20只,且每一個球上都寫有號碼(1~20號)和1只紅球,規(guī)定:每次只摸一只球.摸前交1元錢且在1~20內(nèi)寫一個號碼,摸到紅球獎5元,摸到號碼數(shù)與你寫的號碼相同獎10元.
(1)你認為該游戲?qū)?/span>“摸彩”者有利嗎?說明你的理由.
(2)若一個“摸彩”者多次摸獎后,他平均每次將獲利或損失多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在直角坐標系xOy中,點A,點B坐標分別為(﹣1,0),(0,
),連結(jié)AB,OD由△AOB繞O點順時針旋轉(zhuǎn)60°而得.
(1)求點C的坐標;
(2)△AOB繞點O順時針旋轉(zhuǎn)60°所掃過的面積;
(3)線段AB繞點O順時針旋轉(zhuǎn)60°所掃過的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條直線AB、CD相交于點O,且∠AOC=90°,射線OM從OB開始繞O點逆時針方向旋轉(zhuǎn),速度為15°/s,射線ON同時從OD開始繞O點順時針方向旋轉(zhuǎn),速度為12°/s.兩條射線OM、ON同時運動,運動時間為t秒.(本題出現(xiàn)的角均小于平角)
(1)當(dāng)t=2時,∠MON的度數(shù)為 ,∠BON的度數(shù)為 ;∠MOC的度數(shù)為
(2)當(dāng)0<t<12時,若∠AOM=3∠AON-60°,試求出t的值;
(3)當(dāng)0<t<6時,探究
的值,問:t滿足怎樣的條件是定值;滿足怎樣的條件不是定值?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和![]()
其中正確結(jié)論的個數(shù)是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點A,點(﹣2,m)和(﹣5,n)在該拋物線上,則下列結(jié)論中不正確的是( 。
![]()
A. b2>4ac B. m>n C. 方程ax2+bx+c=﹣4的兩根為﹣5或﹣1 D. ax2+bx+c≥﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(﹣
, 0),點B(2,0),與y軸交于點C(0,1),連接BC.
(1)求拋物線的解析式;
(2)N為拋物線上的一個動點,過點N作NP⊥x軸于點P,設(shè)點N的橫坐標為t(﹣
<t<2),求△ABN的面積s與t的函數(shù)解析式;
(3)若0<t<2且t≠0時,△OPN∽△COB,求點N的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖1,在平面內(nèi)選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點的“極坐標”,這樣建立的坐標系稱為“極坐標系”.
應(yīng)用:在圖2的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標應(yīng)記為( 。
![]()
A.(60°,4) B.(45°,4) C.(60°,2
) D.(50°,2
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com