【題目】已知:如圖,在△ABC中,D是AB邊上一點,圓O過D、B、C三點,∠DOC=2∠ACD=90°.如果∠ACB=75°,圓O的半徑為2,則BD的長為_____.
![]()
【答案】2.
【解析】
接OB,根據(jù)∠DOC=2∠ACD=90°.得∠ACD=45°,進而得∠BCD=30°,∠BOC=150°,∠DOB=60°,證明△BOD是等邊三角形,即可求得BD的長.
如圖,連接OB,
![]()
∵∠DOC=2∠ACD=90°.
∴∠ACD=45°,
∵∠ACB=75°,
∴∠BCD=∠ACB﹣∠ACD=30°,
∵OC=OD,∠DOC=90°,
∴∠DCO=45°,
∴∠BCO=∠DCO﹣∠BCD=15°,
∵OB=OC,
∴∠CBO=∠BCO=15°,
∴∠BOC=150°,
∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,
∵OB=OD,
∴△BOD是等邊三角形,
∴BD=OD=2.
故答案為2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在正方形ABCD中,點E是AB的中點,點P是對角線AC上一動點,設PC的長度為x,PE與PB的長度和為y,圖②是y關于x的函數(shù)圖象,則圖象上最低點H的坐標為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④
<a<
⑤b>c.其中含所有正確結論的選項是( 。
![]()
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)方法選擇:如圖①,四邊形ABCD是⊙O的內接四邊形,連接AC,BD,AB=BC=AC.求證:BD=AD+CD.
小穎認為可用截長法證明:在DB上截取DM=AD,連接AM…
小軍認為可用補短法證明:延長CD至點N,使得DN=AD…
請你選擇一種方法證明.
(2)類比探究:(探究1)如圖②,四邊形ABCD是⊙O的內接四邊形,連接AC,BD,BC是⊙O的直徑,AB=AC.試用等式表示線段AD,BD,CD之間的數(shù)量關系,井證明你的結論.
(探究2)如圖③,四邊形ABCD是⊙O的內接四邊形,連接AC,BD.若BC是⊙O的直徑,∠ABC=30°,則線段AD,BD,CD之間的等量關系式是 .
(3)拓展猜想:如圖④,四邊形ABCD是⊙O的內接四邊形,連接AC,BD.若BC是⊙O的直徑,BC:AC:AB=a:b:c,則線段AD,BD,CD之間的等量關系式是 .
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】瀾鑫商場為“雙十一購物節(jié)”請甲乙兩個廣告公司布置展廳,已知乙單獨完成此項任務的天數(shù)是甲單獨完成此任務天數(shù)的2倍.若兩公司合作4天,再由甲公司單獨做3天就可以完成任務.
(1)甲公司與乙公司單獨完成這項任務各需多少天?
(2)甲公司每天所需費用為5萬元,乙公司每天所需費用為2萬元,要使這項工作的總費用不超過40萬元,則甲公司至多工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,連接CD,過點C作CE⊥DB,垂足為E,直徑AB與CE的延長線相交于F點.
(1)求證:CF是⊙O的切線;
(2)當BD=
,sinF=
時,求OF的長.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形
中,點
和點
是對角線
上的兩點,![]()
且
過點
作
交
的延長線于點
.
![]()
(1)求證:四邊形
是平行四邊形.
(2)若
,
,BC=4
,則
的面積是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有兩個不相等的實數(shù)根
(1)求實數(shù)m的取值范圍;
(2)若兩個實數(shù)根的平方和等于15,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某氣球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓p(單位:千帕)隨氣體體積V(單位:立方米)的變化而變化,p隨V的變化情況如表所示.
P | 1.5 | 2 | 2.5 | 3 | 4 | … |
V | 64 | 48 | 38.4 | 32 | 24 | … |
(1)寫出一個符合表格數(shù)據(jù)的p關于V的函數(shù)解析式
(2)當氣球內的氣壓大于144千帕時,氣球將爆炸,依照(1)中的函數(shù)解析式,基于安全考慮,氣球的體積至少為多少立方米?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com