(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖①方法折疊,其中點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE是等腰三角形;
(2)再將圖①中的△CBE沿對(duì)稱(chēng)軸EF折疊(如圖②).通過(guò)折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無(wú)縫無(wú)重疊)所成的矩形,我們稱(chēng)這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請(qǐng)?jiān)趫D③中畫(huà)出折痕;
(3)請(qǐng)?jiān)趫D④的方格紙中畫(huà)出一個(gè)斜三角形,同時(shí)滿(mǎn)足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過(guò)折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請(qǐng)你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿(mǎn)足何條件時(shí),一定能折成組合矩形?
![]()
解:(1)∵∠ECB=90°一∠DCE,∠B=90°一∠A,
又由對(duì)稱(chēng)性知,∠A=∠DCE,
∴∠ECB=∠B. ∴△BCE是等腰三角形.
(2)如圖1所示(共有三種折法,折痕畫(huà)對(duì)均可).
(3)如圖2所示(答案不惟一,只要體現(xiàn)出一條邊與該邊上的高相等即可)
(4)當(dāng)一個(gè)四邊形的兩條對(duì)角線(xiàn)互相垂直時(shí),可以折成一個(gè)組合矩形.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:第27章《相似》好題集(29):27.2 相似三角形(解析版) 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com