分析 (1)根據(jù)二次函數(shù)的圖象經(jīng)過點(diǎn)(0,-3),(2,5),(-1,-4),可以求得此二次函數(shù)的解析式;
(2)首先根據(jù)第(1)問中求得的函數(shù)解析式可化為頂點(diǎn)式,從而可以得到頂點(diǎn)P的坐標(biāo),再令y=0代入求得的函數(shù)解析式可以求得點(diǎn)A和點(diǎn)B的坐標(biāo),從而可以得到函數(shù)值y<0時(shí)自變量x的取值范圍,由頂點(diǎn)P的坐標(biāo)和函數(shù)圖象可以得到函數(shù)的增減性;
(3)由(2)可知點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(1,0),頂點(diǎn)P的坐標(biāo)為(-1,-4),所以AB的長(zhǎng)可求出,△ABP邊AB的高即為點(diǎn)P的縱坐標(biāo)的絕對(duì)值,利用三角形面積公式計(jì)算即可.
解答 解:
(1)設(shè)此二次函數(shù)的解析式為:y=ax2+bx+c,
∵二次函數(shù)的圖象經(jīng)過點(diǎn)(0,-3),(2,5),(-1,-4),
∴$\left\{\begin{array}{l}{c=-4}\\{4a+2b+c=5}\\{a-b+c=-4}\end{array}\right.$,
解得a=1,b=2,c=-3,
∴此二次函數(shù)的解析式是:y=x2+2x-3;
(2)∵y=x2+2x-3=(x+1)2-4,點(diǎn)P為此二次函數(shù)的頂點(diǎn)坐標(biāo),
∴點(diǎn)P的坐標(biāo)為(-1,-4),
當(dāng)x<-1時(shí),y隨x的增大而減小;
當(dāng)x>-1時(shí),y隨x的增大而增大,
將y=0代入y=x2+2x-3得,x1=-3,x2=1,
∴點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(1,0)
∴函數(shù)值y<0時(shí)自變量x的取值范圍是:-3<x<1;
(3)∵點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(1,0),頂點(diǎn)P的坐標(biāo)為(-1,-4),
∴△DEF的面積=$\frac{1}{2}$×4×4=8.
點(diǎn)評(píng) 本題考查拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì)、用待定系數(shù)法求二次函數(shù)的解析式,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想找出所求問題需要的條件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (x+4)2=17 | B. | (x-4)2=17 | C. | (x+4)2=15 | D. | (x-4)2=15 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com