【題目】學(xué)校6名教師和234名學(xué)生集體外出活動,準(zhǔn)備租用45座大車或30座小車.若租用1輛大車2輛小車共需租車費(fèi)1000元;若租用2輛大車一輛小車共需租車費(fèi)1100元.
(1)求大、小車每輛的租車費(fèi)各是多少元?
(2)若每輛車上至少要有一名教師,且總租車費(fèi)用不超過2300元,求最省錢的租車方案.
【答案】
(1)解:設(shè)大車每輛的租車費(fèi)是x元、小車每輛的租車費(fèi)是y元.
可得方程組
,
解得
.
答:大車每輛的租車費(fèi)是400元、小車每輛的租車費(fèi)是300元
(2)解:由每輛汽車上至少要有1名老師,汽車總數(shù)不能大于6輛;
又要保證240名師生有車坐,汽車總數(shù)不能小于
(取整為6)輛,
綜合起來可知汽車總數(shù)為6輛.
設(shè)租用m輛大型車,則租車費(fèi)用Q(單位:元)是m的函數(shù),
即Q=400m+300(6﹣m);
化簡為:Q=100m+1800,
依題意有:100m+1800≤2300,
∴m≤5,
又要保證240名師生有車坐,45m+30(6﹣m)≥240,解得m≥4,
所以有兩種租車方案,
方案一:4輛大車,2輛小車;
方案二:5輛大車,1輛小車.
∵Q隨m增加而增加,
∴當(dāng)m=4時,Q最少為2200元.
故最省錢的租車方案是:4輛大車,2輛小車
【解析】(1)設(shè)大車每輛的租車費(fèi)是x元、小車每輛的租車費(fèi)是y元.根據(jù)題意:“租用1輛大車2輛小車共需租車費(fèi)1000元”;“租用2輛大車一輛小車共需租車費(fèi)1100元”;列出方程組,求解即可;(2)根據(jù)汽車總數(shù)不能小于
(取整為6)輛,即可求出共需租汽車的輛數(shù);設(shè)租用大車m輛,則租車費(fèi)用Q(單位:元)是m的函數(shù),由題意得出400m+300(6﹣m)≤2300,得出取值范圍,分析得出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一元一次不等式組的應(yīng)用的相關(guān)知識,掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一張復(fù)印出來的紙上,一個三角形的一條邊由原圖中的2cm變成了6cm,則復(fù)印出的三角形的面積是原圖中三角形面積的( )
A. 3倍B. 6倍C. 9倍D. 12倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠α與∠β的兩邊分別平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,則∠α的度數(shù)為( )
A. 70° B. 70°或86° C. 86° D. 30°或38°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E為平行四邊形ABCD中DC邊的延長線上一點(diǎn),且CE=DC,連接AE分別交BC,BD于點(diǎn)F,G,連接BE. ![]()
(1)求證:△AFB≌△EFG;
(2)判斷CF與AD的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C,拋物線l2經(jīng)過點(diǎn)A,與x軸的另一個交點(diǎn)為E(4,0),與y軸交于點(diǎn)D(0,﹣2).
(1)求拋物線l2的解析式;
(2)點(diǎn)P為線段AB上一動點(diǎn)(不與A、B重合),過點(diǎn)P作y軸的平行線交拋物線l1于點(diǎn)M,交拋物線l2于點(diǎn)N.
①當(dāng)四邊形AMBN的面積最大時,求點(diǎn)P的坐標(biāo);
②當(dāng)CM=DN≠0時,求點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,F(xiàn)是對角線AC上的一點(diǎn),點(diǎn)E在BC的延長線上,且BF=EF. ![]()
(1)求證:BF=DF;
(2)求證:∠DFE=90°;
(3)如果把正方形ABCD改為菱形,其他條件不變(如圖②),當(dāng)∠ABC=50°時,∠DFE=度.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com