分析 過點(diǎn)C作FG的平行線交直線AB于H,證得四邊形FHCG為矩形.得出FH=CG,F(xiàn)G=CH,所以△BEF與△CEG的周長(zhǎng)之和等于BC+CH+BH,證得Rt△BEF∽R(shí)t△BAM,那么根據(jù)相似三角形的性質(zhì)得到$\frac{AB}{BC}=\frac{AM}{CH}$,即可求得CH=8,然后根據(jù)勾股定理求得BH=6,即可求出兩三角形的周長(zhǎng)和是24.
解答 解:是定值,
過點(diǎn)C作FG的平行線交直線AB于H,
因?yàn)镚F⊥AB,所以四邊形FHCG為矩形.
所以FH=CG,F(xiàn)G=CH,
因此,△BEF與△CEG的周長(zhǎng)之和等于BC+CH+BH,
∵∠B=∠B,∠AMB=∠BHC=90°
∴△ABM∽△CBH,
∴$\frac{AB}{BC}=\frac{AM}{CH}$,
由BC=10,AB=5,AM=4,
∴CH=$\frac{AM•BC}{AB}$=$\frac{4×10}{5}$=8,
在RT△BCH中,BH=$\sqrt{B{C}^{2}-C{H}^{2}}$=6,
所以BC+CH+BH=24,
所以,△BEF與△CEG的周長(zhǎng)之和為24是定值.
點(diǎn)評(píng) 此題主要考查了矩形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{5\sqrt{2}}{2}$ | C. | $\frac{7\sqrt{2}}{2}$ | D. | $\frac{9\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com