如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(16,0)、與y軸正半軸交于點(diǎn)E(0,16),邊長(zhǎng)為16的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合;
![]()
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q(運(yùn)動(dòng)時(shí),點(diǎn)P不與A、B兩點(diǎn)重合,點(diǎn)Q不與C、D兩點(diǎn)重合).設(shè)點(diǎn)A的坐標(biāo)為(m,n)(m>0).①當(dāng)PO=PF時(shí),分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo);②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時(shí),請(qǐng)直接寫出m的取值范圍;③當(dāng)n=7時(shí),是否存在m的值使點(diǎn)P為AB邊中點(diǎn).若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.
![]()
|
@@ [解](1)由拋物線y=ax2+c經(jīng)過點(diǎn)E(0,16)、F(16,0)得: ∴y=- @@ (2)①過點(diǎn)P做PG^ x軸于點(diǎn)G,∵PO=PF,∴OG=FG,∵F(16,0),∴OF=16, ∴OG= ∴y=- ∵P點(diǎn)的縱坐標(biāo)為12,正方形ABCD邊長(zhǎng)是16,∴Q點(diǎn)的縱坐標(biāo)為-4, ∵Q點(diǎn)在拋物線上,∴-4=- ∵m>0,∴x2=-8 ②8 ③不存在; 理由:當(dāng)n=7時(shí),則P點(diǎn)的縱坐標(biāo)為7,∵P點(diǎn)在拋物線上,∴7=- ∴x1=12,x2=-12,∵m>0,∴x2=-12(舍去),∴x=12,∴P點(diǎn)坐標(biāo)為(12,7), ∵P為AB中點(diǎn),∴AP= 又∵正方形ABCD邊長(zhǎng)是16,∴點(diǎn)B的坐標(biāo)是(20,7), 點(diǎn)C的坐標(biāo)是(20,-9),∴點(diǎn)Q的縱坐標(biāo)為-9,∵Q點(diǎn)在拋物線上, ∴-9=- ∴Q點(diǎn)坐標(biāo)(20,-9),∴點(diǎn)Q與點(diǎn)C重合,這與已知點(diǎn)Q不與點(diǎn)C重合矛盾, ∴當(dāng)n=7時(shí),不存在這樣的m值使P為AB邊的中點(diǎn). |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).
(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):
如圖1,當(dāng)點(diǎn)
為旋轉(zhuǎn)中心時(shí),點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn),點(diǎn)
再繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn),這時(shí)點(diǎn)
與點(diǎn)
重合.
如圖2,當(dāng)點(diǎn)
、
為旋轉(zhuǎn)中心時(shí),點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn),點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn),點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn),點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn),小明發(fā)現(xiàn)P、
兩點(diǎn)關(guān)于點(diǎn)
中心對(duì)稱.
![]()
![]()
![]()
(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)
、
,
小明在證明P、
兩點(diǎn)關(guān)于點(diǎn)
中心對(duì)稱時(shí),除了說明P、
、
三點(diǎn)共線之外,還需證明;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)
、
、
為旋轉(zhuǎn)中心時(shí),點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn);點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn);點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到
點(diǎn);點(diǎn)
繞著點(diǎn)
旋轉(zhuǎn)180°得到點(diǎn)
. 繼續(xù)如此操作若干次得到點(diǎn)
,則點(diǎn)
的坐標(biāo)為(),點(diǎn)
的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com