已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.
(1)求證:AB=BC;
(2)當BE⊥AD于E時,試證明:BE=AE+CD.
![]()
(1)(2)證明見解析
【解析】解:(1)證明:連接AC。![]()
∵∠ABC=90°,∴AB2+BC2=AC2。
∵CD⊥AD,∴AD2+CD2=AC2。
∵AD2+CD2=2AB2,∴AB2+BC2=2AB2。
∴AB=BC。
(2)證明:過C作CF⊥BE于F。
∵BE⊥AD,∴四邊形CDEF是矩形!郈D=EF。
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF。
又∵AB=BC,∠BEA=∠CFB,∴△BAE≌△CBF(AAS)。∴AE=BF。
∴BE=BF+EF =AE+CD。
(1)題目中存在直角,垂直,含線段平方的等式,因此考慮連接AC,構造直角三角形,利用勾股定理證明。
(2)可采用“截長”法證明,過點C作CF⊥BE于F,易證CD=EF,只需再證明AE=BF即可,這一點又可通過全等三角形獲證.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com