分析 根據(jù)DE∥FG∥BC、GI∥EF∥AB即可得出∠AED=∠EGF=∠GCI、∠A=∠FEG=∠IGC,由此即可得出△ADE∽△EFG∽△GIC∽△ABC,根據(jù)△ADE、△EFG、△GIC的面積分別為8cm2、32cm2、18cm2,即可得出AE:EG:GC=2:4:3,即AE:AC=2:9,再根據(jù)相似三角形的性質(zhì)即可得出S△ABC=$(\frac{AC}{AE})^{2}$•S△ADE,代入數(shù)據(jù)即可得出結(jié)論.
解答 解:∵DE∥FG∥BC,
∴∠AED=∠EGF=∠GCI,
∵GI∥EF∥AB,
∴∠A=∠FEG=∠IGC,
∴△ADE∽△EFG∽△GIC∽△ABC,
∵△ADE、△EFG、△GIC的面積分別為8cm2、32cm2、18cm2,
∴AE:EG:GC=2:4:3,
∴AE:AC=2:9,
∴S△ABC=$(\frac{AC}{AE})^{2}$•S△ADE=$(\frac{9}{2})^{2}$×8=162.
故答案為:162.
點評 本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)定理是解題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 1.5 | C. | 2 | D. | 2.5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1:1 | B. | 1:2 | C. | 2:3 | D. | $\sqrt{2}$:3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 點P在⊙O上 | B. | 點P在⊙O內(nèi) | C. | 點P在⊙O外 | D. | 點P不在⊙O上 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com