【題目】如圖,在△ABC中,tanA=2,以BC為直徑的⊙O分別交AB、AC于點D、點E,若D是AB的中點,OD=5,則AE=_____.
![]()
【答案】4
【解析】
根據(jù)題意可連接CD,BE,可得AC=BC=10,因為tanA=2,可得CD=2AD,在Rt△ADC中,AD2+CD2=AC2,AB=2AD=4
,在Rt△AEB中,tanA=2,即可解答
解:連接CD,BE,
∵BC為⊙O的直徑,
∴CD⊥AB,BE⊥AC,
∵D是AB的中點,
∴CD垂直平分AB,
∴AC=BC,
∵OD=5,
∴AC=BC=10,
∵tanA=2,
∴CD=2AD,
在Rt△ADC中,AD2+CD2=AC2,
即AD2+(2AD)2=102,
∴AD=2
,
∴AB=2AD=4
,
在Rt△AEB中,tanA=2,
∴BE=2AE,AE2+BE2=AB2,
∴AE=4,
故答案為:4
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,D為BC延長線一點,且BC=CD,CE⊥AD于點E.
(1)求證:直線EC為⊙O的切線;
(2)設(shè)BE與⊙O交于點F,AF的延長線與EC交于點P,已知∠PCF=∠CBF,PC=5,PF=3.求:cos∠PEF的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(k+1)x+
k2+1與x軸有交點.
(1)求k的取值范圍;
(2)方程x2﹣(k+1)x+
k2+1=0有兩個實數(shù)根,分別為x1,x2,且方程x12+x22+15=6x1x2,求k的值,并寫出y=x2﹣(k+1)x+
k2+1的代數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,其中AB為⊙O的直徑,過點A作⊙O的切線PA.
(1)求證:∠PAC=∠ABC;
(2)若∠PAC=30°,AC=3,求劣弧AC的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD,
(1)求證:AD=BE;
(2)當(dāng)△ABC滿足什么條件時四邊形ABED是正方形?請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,F是⊙O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.
(1)求證:DE是⊙O的切線;
(2)若DE=3,CE=2,
①求
值;
②若點G 為AE上一點,求OG+
EG最小值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)y2=
(m為常數(shù),m≠0)的圖象相交于點M(1,4)和點N(4,n).
(1)反比例函數(shù)與一次函數(shù)的解析式.
(2)函數(shù)y2=
的圖象(x>0)上有一個動點C,若先將直線MN平移使它過點C,再繞點C旋轉(zhuǎn)得到直線PQ,PQ交x軸于點A,交y軸點B,若BC=2CA,求OAOB的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,以AB為直徑的⊙O與BC交于點D,與AC交于點E,連OD交BE于點M,且MD=2.
![]()
(1)求BE長;(2)求tanC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標(biāo)為(1,n),則下列結(jié)論:
①4a+2b<0;
②﹣1≤a≤
;
③對于任意實數(shù)m,a+b≥am2+bm總成立;
④關(guān)于x的方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中結(jié)論正確的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com