分析 首先連接OP.由矩形ABCD的兩邊AB=3,BC=4,可求得OA=OD=$\frac{5}{2}$,然后由S△AOD=S△AOP+S△DOP求得答案.
解答
解:不會(huì)變化;理由如下:
連接OP,
∵矩形ABCD的兩邊AB=3,BC=4,
∴S矩形ABCD=AB•BC=12,OA=OC,OB=OD,AC=BD,AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=5,
∴S△AOD=$\frac{1}{4}$S矩形ABCD=3,OA=OD=$\frac{5}{2}$,
∴S△AOD=S△AOP+S△DOP=$\frac{1}{2}$OA•PE+$\frac{1}{2}$OD•PF=$\frac{1}{2}$OA(PE+PF)=$\frac{1}{2}$×$\frac{5}{2}$×(PE+PF)=3,
∴PE+PF=$\frac{12}{5}$.
點(diǎn)評 此題考查了矩形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | |a+b|=-a+b | B. | |a-b|=-a+b | C. | b-a<0 | D. | $\frac{a}$>0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1<|a|<6 | B. | 1≤|a|<6 | C. | 1<|a|<10 | D. | 1≤|a|<10 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com