如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線.
(2)若BC=2
,sin∠BCP=
,求點(diǎn)B到AC的距離.
(3)在第(2)的條件下,求△ACP的周長(zhǎng).
![]()
(1)證明見(jiàn)解析(2)4(3)20
【解析】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°,
∴2∠BCP+2∠BCA=180°。
∴∠BCP+∠BCA=90°,即∠PCA=90°。
又∵AC是⊙O的直徑,∴直線CP是⊙O的切線。
(2)如圖,作BD⊥AC于點(diǎn)D,![]()
∵PC⊥AC,∴BD∥PC!唷螾CB=∠DBC。
∵C=2
,sin∠BCP=![]()
∴
,解得:DC=2。
∴由勾股定理得:BD=4!帱c(diǎn)B到AC的距離為4。
(3)如圖,連接AN,![]()
在Rt△ACN中,
,
又CD=2,∴AD=AC﹣CD=5﹣2=3。
∵BD∥CP,∴△ABD∽△ACP。
∴
,即
。∴
。
在Rt△ACP中,
。
∴△ACP的周長(zhǎng)為
。
(1))根據(jù)∠ABC=∠AC且∠CAB=2∠BCP,在△ABC中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,從而得到∠BCP+∠BCA=90°,證得直線CP是⊙O的切線。
(2)作BD⊥AC于點(diǎn)D,得到BD∥PC,從而利用
求得DC=2,再根據(jù)勾股定理求得點(diǎn)B到AC的距離為4。
(3)先求出AC的長(zhǎng)度,然后由BD∥PC求得△ABD∽△ACP,利用比例線段關(guān)系求得CP的長(zhǎng)度,再由勾股定理求出AP的長(zhǎng)度,從而求得△ACP的周長(zhǎng)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com