如圖,正方形ABCD的邊長為4,M、N分別是BC、CD上的兩個動點,且始終保持AM⊥MN,當(dāng)BM= ,四邊形ABCN的面積最大。![]()
2
解析試題分析:設(shè)BM=x,則MC=4-x,當(dāng)AM⊥MN時,利用互余關(guān)系可證△ABM∽△MCN,利用相似比求CN,根據(jù)梯形的面積公式表示四邊形ABCN的面積,用二次函數(shù)的性質(zhì)求面積的最大值.
設(shè)BM=x,則MC=4-x,
∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,
∴∠AMB=90°-∠NMC=∠MNC,![]()
![]()
![]()
![]()
![]()
考點:相似三角形的判定和性質(zhì),二次函數(shù)的應(yīng)用
點評:解題的關(guān)鍵是根據(jù)已知條件判斷相似三角形,利用相似比求函數(shù)關(guān)系式.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com